Skip to main content
Log in

Seismic data compression: an overview

  • Survey
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Seismic Data (SD) have been for several decades used as one of the main inspection and exploration tools in various fields, particularly petroleum industry and geoscience. However, seismic datasets are huge and involve many terabytes, whose handling and storage are expensive for industry activities and computers capabilities. Driven by the large volume of SD, several compression methods have been proposed the last five decades to significantly reduce the SD size, while aiming the highest possible preservation of rocks structural and lithological characteristics. Considering the importance of SD compression, this paper is expected to make the first overview of a large number of relevant state-of-the-art papers related to SD compression, where the papers are divided into two main classes, with respect to the approach they use to extract the SD relevant features. Our aim is to review recent achievements in SD compression, and to go over covering scope, key techniques and performances of the main representative methods on this topic. This, along with issues of these latter, can help raise some open challenges and future directions for upcoming SD compression efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Not applicable.

Notes

  1. Video Coding Experts Group.

  2. Moving Picture Experts Group.

  3. JPEG Artificial Intelligence.

References

  1. Goyal, V.K.: Theoretical foundations of transform coding. IEEE Signal Process. Mag. 18(5), 9–21 (2001)

    ADS  Google Scholar 

  2. Sebai, D., Shah, A.U.: Semantic-Oriented Learning-Based Image Compression by Only-Train-Once Quantized Autoencoders, pp. 1–9. Signal, Image and Video Processing (2022)

    Google Scholar 

  3. M. Sehli, D. Sebai and F. Ghorbel, WeLDCFNet: Convolutional Neural Network based on Wedgelet Filters and Learnt Deep Correlation Features for depth maps features extraction, IEEE International Workshop on Multimedia Signal Processing (MMSP), 2022

  4. D. Sebai, Multi-rate deep semantic image compression with quantized modulated autoencoder, IEEE International Workshop on Multimedia Signal Processing (MMSP), 2021

  5. Hinton, G.E., Salakhutdinov, R.R.: Reducing the Dimensionality of Data with Neural Networks. Science 313(5786), 504–507 (2006)

    MathSciNet  CAS  PubMed  ADS  Google Scholar 

  6. H. Mujtaba, Introduction to Autoencoders ? What are Autoencoders Applications and Types ?, Great learning, 2020

  7. K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, Learning phrase representations using rnn encoder-decoder for statistical machine translation, arXiv:1406.1078, 2014

  8. D. P. Kingma and M. Welling, An introduction to variational autoencoders, arXiv:1906.02691, 2019

  9. Sullivan, G.J., Ohm, J., Wiegand, T., Han, W.J.: Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circ. Syst. Video Technol. 22, 1649–1668 (2012)

    Google Scholar 

  10. T. Wiegand, G. J. Sullivan, G. Bjontegaard and A. Luthra, Overview of the H.264/AVC video coding standard, IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, pp. 560-576, 2003

  11. G. K. Wallace, The JPEG still picture compression standard, IEEE transactions on consumer electronics, 38.1, pp. xviii-xxxiv, 1992

  12. M. W. Marcellin, M. J. Gormish, A. Bilgin and M. P. Boliek, An overview of JPEG-2000, IEEE Data Compression Conference, 2000

  13. Bross, B., Wang, Y.K., Ye, Y., Liu, S., Chen, J., Sullivan, G.J., Ohm, J.R.: Overview of the versatile video coding (VVC) standard and its applications. IEEE Trans. Circ. Syst. Video Technol. 31(10), 3736–3764 (2021)

    Google Scholar 

  14. J. L. Mari and M. Mendes, Seismic imaging: a practical approach, EDP Sciences, 2019

  15. D. Taubman and M. Marcellin, Information Technology-JPEG XR Image Coding System-Part 2: Image Coding Specification, Standard Recommendation T.832, 2012

  16. https://archive.epa.gov/esd/archive-geophysics/web/html/marine_seismic_methods.html

  17. H. Nuha, M. Mohandes, B. Liu, and A. Al-Shaikhi, Seismic Data Compression: A Survey, Advances in Geophysics, Tectonics and Petroleum Geosciences: Proceedings of the 2nd Springer Conference of the Arabian Journal of Geosciences (CAJG-2), 2019

  18. Y. Le Cun and Y. Bengio, Convolutional networks for images, speech, and time series, M. A. Arbib (Ed.), The handbook of brain theory and neural networks. Cambridge, MA: MIT Press, 1995

  19. I. J. Goodfellow, Generative adversarial nets, Advances in Neural Information Processing Systems, 2014

  20. https://developers.google.com/machine-learning/gan/gan_structure

  21. M. Hoon Yap, G. Pons, J. Marti, S. Ganau, M. Sentis, R. Zwiggelaar, A. K. Davison and Robert Marti, Automated breast ultrasound lesions detection using convolutional neural networks, IEEE journal of biomedical and health informatics, vol. 22, no. 4, pp. 1218-1226, 2017

  22. Averbuch, A., Meyer, F., Stromberg, J.-O., Coifman, R., Vassiliou, A.: Low bit-rate efficient compression for seismic data. IEEE Trans. Image Process. 10(10), 1801–1813 (2001)

    MathSciNet  CAS  PubMed  ADS  Google Scholar 

  23. Liang, J., Tran, T.D.: Fast multiplierless approximations of the DCT with the lifting scheme. IEEE Trans. Signal Process. 49(12), 3032–3044 (2001)

    ADS  Google Scholar 

  24. D. Taubman and M. Marcellin, Information Technology - JPEG XR Image Coding System, Part 2: Image Coding Specification, Standard Recommendation T.832, 2012

  25. Radosavljevic, M., Xiong, Z., Ligang, L., Hohl, D., Vukobratovi, D.: High bit-septh seismic data compression: a novel codec under the framework of HEVC. IEEE Access 8, 114443–114459 (2020)

    Google Scholar 

  26. M. Radosavljevic, Z. Xiong, L. Ligang, D. Hohl and D. Vukobratovi, HEVC-Based Compression of High Bit-Depth 3D Seismic Data, IEEE International Conference on Image Processing, 2017

  27. M. Radosavljevic, Z. Xiong, L. Ligang and D. Vukobratovi, High Bit-depth Image Compression with Application to Seismic Data, IEEE International Conference on Visual Communications and Image Processing, 2016

  28. J. D. Villasenor, R. A. Ergas and P. L. Donoho, Seismic data compression using high-dimensional wavelet transforms, Data Compression Conference, 1996

  29. Xie, K., Yu, W., Bai, Z.: Fast seismic data compression based on high efficiency SPIHT. Electron. Lett. 50(5), 365–367 (2014)

    ADS  Google Scholar 

  30. A. Z. Averbuch, V. A. Zheludev, M. Guttmann and D. D. Kosloff, LCT-wavelet based algorithms for data compression, International Journal of Wavelets, Multiresolution and Information Processing, vol. 11, no. 5, 2013

  31. Meyer, F.G., Averbuch, A.Z., Stromberg, J.-O.: Fast adaptive wavelet packet image compression. IEEE Trans. Image Process. 9(5), 792–800 (2000)

    CAS  PubMed  ADS  Google Scholar 

  32. Wu, W., Yang, Z., Qin, Q., Hu, F.: Adaptive seismic data compression using wavelet packets. IEEE Int. Symp. Geosci. Remote Sens. 9(5), 787–789 (2006)

    Google Scholar 

  33. Meyer, F.G.: Image compression with adaptive local cosines: a comparative study. IEEE Trans. Image Process. 11(6), 616–629 (2002)

    PubMed  ADS  Google Scholar 

  34. Spanias, A.S., Jonsson, S.B., Stearns, S.D.: Transform methods for seismic data compression. IEEE Trans. Geosci. Remote Sens. 29(3), 407–416 (1991)

    ADS  Google Scholar 

  35. Wang, Y., Wu, R.-S.: Seismic data compression by an adaptive local cosine/sine transform and its effects on migration. Geophys. Prospecting 48(6), 1009–1031 (2000)

    ADS  Google Scholar 

  36. Duval, L.C., Nguyen, T.Q.: Seismic data compression: A comparative study between GenLOT and wavelet compression. Proc. SPIE 3813(6), 802–810 (1999)

    ADS  Google Scholar 

  37. Duval, L.C., Nagai, T.: Seismic data compression using GULLOTS. Int. Conf. Acoustics Speech Signal Process. 3, 1765–1768 (2001)

    Google Scholar 

  38. L. C. Duval and T. Rosten, Filter bank decomposition of seismic data with application to compression and denoising, SEG Technical Program Expanded Abstracts, pp. 2055-2058, 2000

  39. Rosten, T., Ramstad, T.A., Amundsen, L.: Optimization of sub-band coding method for seismic data compression. Geophys. Prospect. 52(5), 359–378 (2004)

    ADS  Google Scholar 

  40. Zhang, Z., Xu, Y., Yang, J., Li, X., Zhang, D.: A survey of sparse representation: algorithms and applications. IEEE Access 3, 490–530 (2015)

    Google Scholar 

  41. Hu, J., Fomel, S., Demanet, L., Ying, L.: A fast butterfly algorithm for generalized radon transforms. Geophysics 78(4), U41–U51 (2013)

    ADS  Google Scholar 

  42. Liu, B., Mohandes, M., Nuha, H., Deriche, M., Fekri, F.: A distributed principal component analysis compression for smart seismic acquisition networks. IEEE Trans. Geosci. Remote Sens. 56(6), 3020–3029 (2018)

    ADS  Google Scholar 

  43. Zheng, F., Ling, Y., Tang, Y., Hui, S., Yang, H.: A fidelity-restricted distributed principal component analysis compression algorithm for noncable seismographs. J. Appl. Geophys. 169, 29–36 (2019)

    ADS  Google Scholar 

  44. Payani, A., Abdi, A., Tian, X., Fekri, F., Mohandes, M.: Advances in seismic data compression via learning from data: Compression for seismic data acquisition. IEEE Signal Process. Mag. 35(2), 51–61 (2018)

    Google Scholar 

  45. Tian, X.: Multiscale sparse dictionary learning with rate constraint for seismic data compression. IEEE Access 7, 86651–86663 (2019)

    Google Scholar 

  46. Fornasier, M., Rauhut, H.: Compressive Sensing. Handbook Math. Methods Imaging 1, 187–229 (2015)

    Google Scholar 

  47. Bai, L., Lu, H., Liu, Y.: High-efficiency observations: compressive sensing and recovery of seismic waveform data. Pure Appl. Geophys. 177(1), 469–485 (2020)

    ADS  Google Scholar 

  48. Bin, K., Luo, S., Zhang, X., Lin, J., Tong, X.: Compressive data gathering with generative adversarial networks for wireless geophone networks. IEEE Geosci. Remote Sens. Lett. 18(3), 558–562 (2021)

    ADS  Google Scholar 

  49. Y. Geng, R. S. Wu and J. Gao, Dreamlet transform applied to seismic data compression and its effects on migration, SEG Annual Meeting, 2009

  50. F. Aminzadeh and S. N. Dasgupta, Geophysics for Petroleum Engineers, Developments in Petroleum Science, 2013

  51. Agustsson, E., Mentzer, F., Tschannen, M., Cavigelli, L., Timofte, R., Benini, L., Gool, L.V.: Soft-to-hard vector quantization for end-to-end learning compressible representations. Adv. Neural Inform. Process. Syst. 30, 1141–1151 (2017)

    Google Scholar 

  52. D. Minnen and J. Ballé and G. D. Toderici, Joint autoregressive and hierarchical priors for learned image compression, Advances in Neural Information Processing Systems, pp. 10794-10803, 2018

  53. J. Ballé and V. Laparra and E. P. Simoncelli, End-to-end optimized image compression, arXiv preprint arXiv:1611.01704, 2016

  54. J. Ballé and D. Minnen and S. Singh and S. J. Hwang and N. Johnston, Variational image compression with a scale hyperprior, International Conference on Learning Representations, 2018

  55. J. Lee and S. Cho and S.-K. Beack, Context-adaptive entropy model for end-to-end optimized image compression, International Conference on Learning Representations, 2019

  56. G. Toderici and D. Vincent and N. Johnston and S. J. Hwang and D. Minnen and J. Shor and M. Covell, Full resolution image compression with recurrent neural networks, IEEE Conference on Computer Vision and Pattern Recognition, pp. 5306-5314, 2017

  57. L. Theis and W. Shi and A. Cunningham and F. Huszar, Lossy image compression with compressive autoencoders, International Conference on Learning Representations, 2017

  58. F. Mentzer and E. Agustsson and M. Tschannen and R. Timofte and L. V. Gool, Conditional probability models for deep image compression, IEEE Conference on Computer Vision and Pattern Recognition, pp. 4394-4402, 2018

  59. O. Rippel and L. Bourdev, Real-time adaptive image compression, International Conference on Machine Learning, pp. 2922-2930, 2017

  60. Yang, F., Herranz, L., van de Weijer, J., Guitin, J.A.I., Lopez, A., Mozerov, M.: Variable rate deep image compression with modulated autoencoder. IEEE Signal Process Lett 27, 331–335 (2020)

    ADS  Google Scholar 

  61. Y. Choi and M. El-Khamy and J. Lee, Variable Rate Deep Image Compression With a Conditional Autoencoder, International Conference on Computer Vision (ICCV), 2019

  62. J. Zhou and A. Nakagawa and K. Kato and S. Wen and K. Kazui and Z. Tan, Variable Rate Image Compression Method with Dead-zone Quantizer, Conference on Computer Vision and Pattern Recognition Workshops, 2020

  63. J. Lin and M. Akbari and H. Fu and Q. Zhang and S. Wang and J. Liang and D. Liu and F. Liang and G. Zhang and C. Tu, Learned Variable-Rate Multi-Frequency Image Compression using Modulated Generalized Octave Convolution, International Workshop on Multimedia Signal Processing, 2020

  64. W.-C. Lee and C.-P. Chang and W.-H. Peng and H.-M. Hang, A Hybrid Layered Image Compressor with Deep-Learning Technique, International Workshop on Multimedia Signal Processing, 2020

  65. J. Ascenso and P. Akyazi, MPEG AI image coding common test conditions. In: 84th JPEG meeting (ISO/IEC JTC 1/SC29/WG1, document N84035), Brussels, Geneva, 2019

  66. M. A. Al-Moohimeed, Towards an efficient compression algorithm for seismic data, Asia-Pacific Radio Science Conference, 2004

  67. H. H. Nuha, B. Liu, M. Mohandes and M. Deriche, Seismic data compression using signal alignment and PCA, IEEE-GCC Conference and Exhibition, 2017

  68. Brankovic, M., Gildin, E., Gibson, R.L., Everett, M.E.: A machine learning-based seismic data compression and interpretation using a novel shifted-matrix decomposition algorithm. Appl. Sci. 11(11), 4874 (2021)

    CAS  Google Scholar 

  69. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    CAS  PubMed  ADS  Google Scholar 

  70. H. Nuha, M. Mohandes and B. Liu, Seismic-data compression using autoassociative neural network and restricted Boltzmann machine, SEG Technical Program Expanded Abstracts, 2018

  71. Geng, Z., Wu, X., Fomel, S., Chen, Y.: Relative time seislet transform. Geophysics 85(2), 223-V232 (2020)

    ADS  Google Scholar 

  72. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    MathSciNet  CAS  PubMed  ADS  Google Scholar 

  73. Moller, M.F.: A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw 6(4), 525–533 (1993)

    Google Scholar 

  74. Helal, E.B., Saad, O.M., Hafez, A.G., Chen, Y., Dousoky, G.M.: Seismic data compression using deep learning. IEEE Access 9, 58161–58169 (2021)

    Google Scholar 

  75. H. H. Nuha, A. Balghonaim, B. Liu, M. Mohandes and F. Fekri, Seismic data compression using deep neural network predictors, SEG International Exposition and Annual Meeting, 2019

  76. Nuha, H.H., Balghonaim, A., Liu, B., Mohandes, M., Deriche, M., Fekri, F.: Deep neural networks with extreme learning machine for seismic data compression. Arab. J. Sci. Eng. 45(3), 1367–1377 (2020)

    Google Scholar 

  77. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)

    Google Scholar 

  78. F. Devoti, C. Parera, A. Lieto, D. Moro, V. Lipari, P. Bestagini and S. Tubaro, Wavefield compression for seismic imaging via convolutional neural networks, SEG International Exposition and Annual Meeting, 2019

  79. O. Ronneberger, P. Fischer and T. Brox, U-net: Convolutional networks for biomedical image segmentation, International Conference on Medical image computing and computer-assisted intervention, 2015

  80. A. P. Schiavon, J. P. Navarro, M. Vieira and P. M. C. E. Silvax, Low bit rate 2D seismic image compression with deep autoencoders, International Conference on Computational Science and Its Applications, 2019

  81. https://co2datashare.org/dataset/sleipner-4d-seismic-dataset

  82. https://wiki.seg.org/wiki/2D-Vibroseis-Line-00

  83. https://wiki.seg.org/wiki/Main_Page

  84. https://wiki.seg.org/wiki/Waka-3D

  85. https://wiki.seg.org/wiki/Opunake-3D

  86. https://wiki.seg.org/wiki/Kahu-3D

  87. https://wiki.seg.org/wiki/Parihaka-3D

  88. https://wiki.seg.org/wiki/Kerry-3D

  89. https://wiki.seg.org/wiki/Tui-3D

  90. https://wiki.seg.org/wiki/Waipuku-3D

  91. https://wiki.seg.org/wiki/Waihapa-3D

  92. https://terranubis.com/datainfo/Delft

  93. https://terranubis.com/datainfo/F3-Demo-2020

  94. https://terranubis.com/datainfo/FORCE-ML-Competition-2020

  95. https://terranubis.com/datainfo/FORCE-ML-Competition-2020-Synthetic-Models-and-Wells

  96. https://terranubis.com/datainfo/Penobscot

  97. https://terranubis.com/datainfo/Blake-Ridge-Hydrates-3D

  98. https://terranubis.com/datainfo/NW-Shelf-Australia-Poseidon-3D

  99. https://terranubis.com/datainfo/OGA-Rockall-Trough

  100. https://terranubis.com/datainfo/USGS-Central-Alaska

  101. https://terranubis.com/datainfo/Laurentian-Basin-Complete

  102. https://terranubis.com/datainfo/OGA-MNSH

  103. https://terranubis.com/datainfo/USGS-Beaufort-Sea-Artic-Alaska

  104. https://dataunderground.org/dataset/teapot-dome

  105. Liu, B., Mohandes, M., Nuha, H., Deriche, M., Fekri, F., McClellan, J.H.: A multitone model-based seismic data compression. IEEE Trans. Syst. Man Cybernet. 52(2), 1030–1040 (2021)

    Google Scholar 

  106. Nuha, H., Liu, B., Mohandes, M., Balghonaim, A., Fekri, F.: Seismic data modeling and compression using particle swarm optimization. Arab. J. Geosci. 14(23), 1–11 (2021)

    Google Scholar 

  107. Rubin, M.J., Wakin, M.B., Camp, T.: Lossy compression for wireless seismic data acquisition. IEEE J. Selected Top. Appl. Earth Observations Remote Sens. 9(1), 236–252 (2016)

    ADS  Google Scholar 

  108. S. R. Borra, G. J. Reddy and E. S. Reddy, Seismic data compression using wave atom transform, Global Journal of Computer Science and Technology, 2015

  109. Fajardo, C., Reyes, O.M., Ramirez, A.: Seismic data compression using 2D lifting-wavelet algorithms. Ingeniería y Ciencia 11(21), 221–238 (2015)

    Google Scholar 

  110. Zhang, Z., Zhang, W., Gui, Z.: Seismic data compression based on wavelet transform. Optoelectron. Imaging Multimedia Technol. III 9273, 579–584 (2014)

    Google Scholar 

  111. Meftah, A., Antonini, M., Amar, C.B.: Lossless compression of 3D seismic data using a horizon displacement compensated 3D lifting scheme. Wavelet Appl. Ind. Process. VII 7535, 15–22 (2010)

    Google Scholar 

  112. Wang, S., Li, J., Chiu, S.K., Anno, P.D.: Seismic data compression and regularization via wave packets. Soc. Exploration Geophys. 7535, 3650–3655 (2010)

    Google Scholar 

  113. X. Xie and Q. Qin, Fast lossless compression of seismic floating-point data, International Forum on Information Technology and Applications, 2009

  114. Y. Geng, R. S. Wu and J. Gao, Dreamlet transform applied to seismic data compression and its effects on migration, SEG Annual Meeting, 2009

  115. W. Wang and P. Mishra, A partitioned bitmask-based technique for lossless seismic data compression, Technical report, 2008

  116. A. B. Kiely, Lossless compression of seismic data into fixed-length packets, IPN Progress Report, 2008

  117. Pan, H., Siu, W.C., Law, N.F.: Lossless image compression using binary wavelet transform. IET Image Process. 1(4), 353–362 (2007)

    Google Scholar 

  118. P. Aparna and S. David, Adaptive local cosine transform for seismic image compression, International Conference on Advanced Computing and Communications, 2006

  119. C. Liu, P. Wang, G. Ru, L. Yang and M. Sato, Seismic data compression using united transform method, SEGJ International Symposium, 2006

  120. Wang, X.Z., Teng, Y.T., Gao, M.T., Jiang, H.: Seismic data compression based on integer wavelet transform. Acta Seismologica Sinica 17(1), 123–128 (2004)

    ADS  Google Scholar 

  121. L. C. Duval, V. B. Tran, T. Q. Nguyen and T. D. Tran, GenLOT optimization techniques for seismic data compression, IEEE International Conference on Acoustics, Speech, and Signal Processing, 2000

  122. M. F. Khéne and S. H. Abdul-Jauwad, Efficient seismic compression using the lifting scheme, SEG Technical Program Expanded Abstracts, 2000

  123. L. C. Duval, T. Q. Nguyen and T. D. Tran, Seismic data compression and QC using GenLOT, EAGE Conference, 1999

  124. F. G. Meyer, Fast compression of seismic data with local trigonometric bases, Wavelet Applications in Signal and Image Processing VII, 1999

  125. L. C. Duval, J. Oksman and T. Q. Nguyen, A new class of filter banks for seismic data compression, SEG Technical Program Expanded Abstracts, 1999

  126. G. Beylkin and A. Vassiliou, Wavelet transforms and compression of seismic data, Mathematical Geophysics Summer School, 1998

  127. Y. Wang, R. S. Wu and S. Jin, Adapted local cosine transform application to seismic data compression, International Symposium on Applied Geophysics, 1998

  128. A.Vassiliou and V. Wickerhauser, Comparison of wavelet image coding schemesfor seismic data compression, SEG Technical Program Expanded Abstracts, 1997

  129. G. Mandyam, N. Magotra and W. McCoy, Lossless seismic data compression using adaptive linear prediction, International Geoscience and Remote Sensing Symposium, 1996

  130. A. B. Kiely and F. Pollara, A seismic data compression system using subband coding, The Telecommunications and Data Acquisition Report, 1995

  131. C. Bosman and E. Reiter, Seismic data compression using wavelet transforms, SEG Technical Program Expanded Abstracts, 1993

  132. A. J. Davis, Linear prediction coding for compressing of seismic data, U.S. Patent No. 4,509,150. Washington, DC: U.S. Patent and Trademark Office, 1985

  133. Wood, L.C.: Seismic data compression methods. Geophysics 39(4), 499–525 (1974)

    ADS  Google Scholar 

  134. Faouzi, Z., Mohammed, O., Turquais, P.: A dictionary learning method for seismic data compression. Geophysics 87(2), V101–V116 (2022)

    ADS  Google Scholar 

  135. K. S. d. S. Ribeiro, A. P. Schiavon, J. P. Navarro, M. B. Vieira, S. M. Villela and P. M. C. e Silva, Poststack Seismic Data Compression Using a Generative Adversarial Network, IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1-5, 2022

  136. Navarro, J.P., Schiavon, A.P., Vieira, M., Silva, P.M.: Deep seismic compression. EAGE Conf. Exhibition 19, 1–5 (2019)

    Google Scholar 

  137. Zhang, X., Zhang, S., Lin, J., Sun, F., Zhu, X., Yang, Y., Tang, X., Yang, H.: An efficient seismic data acquisition based on compressed sensing architecture with generative adversarial networks. IEEE Access 7, 105948–105961 (2019)

    Google Scholar 

  138. X. Tian, A. Abdi, E. Liu and F. Fekri, Seismic signal compression through delay compensated and entropy constrained dictionary learning, IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2018

  139. H. Nuha, M. Mohandes, M. Deriche and N. Iqbal, Near Lossless Seismic Data Compression Using Signal Projection Technique, International Geoscience Geomatics Conference, 2015

  140. T. A. Reddy, K. R. Devi and S. V. Gangashetty, Nonlinear principal component analysis for seismic data compression, International Conference on Recent Advances in Information Technology (RAIT), 2012

  141. A. P. Schiavon, K. Ribeiro, J. P. Navarro, M. B. Vieira and P. M. C. e Silva, 3-D Poststack Seismic Data Compression With a Deep Autoencoder, IEEE Geoscience and remote sensing letters, vol. 19, 2020

  142. R. L. de Queiroz, T. Q., Nguyen and K. R. Rao, The GenLOT: generalized linear-phase Lapped Orthogonal Transform, IEEE Transactions on Signal Processing, vol. 44, no. 3, pp.497-507, 1996

  143. Nagai, T., Ikehara, M., Kaneko, M., Kurematsu, A.: The GenLOT: generalized linear-phase Lapped Orthogonal Transform. IEEE Trans. Signal Process. 48(12), 3365–3378 (2000)

    MathSciNet  ADS  Google Scholar 

  144. E. Liu, A. Payani and F. Fekri, Seismic Data Compression Using Online Double-Sparse Dictionary Learning Schemes, Data Compression Conference (DCC), 2017

  145. Y. Zhang, C. Da Silva, R. Kumar, and F. Herrmann, Massive 3D seismic data compression and inversion with hierarchical Tucker, SEG Technical Program Expanded Abstracts, 2017

  146. Uthayakumar, J., Vengattaraman, T., Amudhavel, J.: A simple lossless compression algorithm in wireless sensor networks : an application of seismic data. IIOAB J. 8(2), 274–280 (2017)

    Google Scholar 

  147. Ma, J., Plonka, G., Chauris, H.: A new sparse representation of seismic data using adaptive easy-path wavelet transform. IEEE Geosci. Remote Sens. Lett. 7(3), 540–544 (2010)

    ADS  Google Scholar 

  148. Rosten, T., Ramstad, T.A., Amundsen, L.: Optimization of sub-band coding method for seismic data compression. Geophys. Prospect. 52(5), 359–378 (2004)

    ADS  Google Scholar 

  149. Nijim, Y.W., Stearns, S.D., Mikhael, W.B.: Lossless compression of seismic signals using differentiation. IEEE Trans. Geosci. Remote Sens. 34(1), 52–56 (1996)

    ADS  Google Scholar 

  150. P. L. Donoho, R. A. Ergas, and J. D. Villasenor, High-performance seismic trace compression, SEG Technical Program Expanded Abstracts, 1995

  151. Iqbal, N.: 1-ADM-CNN: A Lightweight In-field Compression Method for Seismic Data. IEEE Trans. Circ. Syst. II 69(12), 5164–5168 (2022)

    Google Scholar 

  152. Lu, P., Xiao, Y., Zhang, Y., Mitsakos, N.: Deep learning for 3D seismic compressive-sensing technique : a novel approach. Leading Edge 38(9), 698–705 (2019)

    Google Scholar 

  153. A. Payani, F. Fekri, G. Alregib, M. Mohandes, and M. Deriche, Compression of seismic signals via recurrent neural networks : Lossy and lossless algorithms, SEG Technical Program Expanded Abstracts, 2019

  154. H.u.R. Khan, and S.A. Zummo, Functional quantization-based data compression in seismic acquisition, Arab. J. Sci. Eng., vol. 44, no. 3, pp. 2151-2163, 2019

  155. B. Liu, H. Nuha, M. Deriche, M. Mohandes, and F. Fekri, Disributed principal component analysis for data compression of sequential seismic sensor arrays, SEG International Exposition and Annual Meeting, 2016

  156. H. H. Nuha, and N. A. Suwastika, Fractional fourier transform for decreasing seismic data lossy compression distortion, International Conference on Information and Communication Technology (ICoICT), 2015

  157. Y. Yang, and S. Nagarajaiah, Data compression of structural seismic responses via principled independent component analysis, Journal of Structural Engineering, vol. 140, no. 7, 2014

  158. C. Picard, and H. Le Capitaine, Explaining autoencoders with local impact scores, Workshop on Trustworthy Artificial Intelligence, 2022

  159. Charte, D., Charte, F., del Jesus, M.J., Herrera, F.: An analysis on the use of autoencoders for representation learning: fundamentals, learning task case studies, explainability and challenges. Neurocomputing 404, 93–107 (2020)

    Google Scholar 

  160. W. Liu, R. Li, M. Zheng, S. Karanam, Z. Wu, B. Bhanu, R. J. Radke, and O. Camps, Towards visually explaining variational autoencoders, IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020

  161. S. M. Shankaranarayana, and D. Runje, ALIME: Autoencoder based approach for local interpretability, International conference on intelligent data engineering and automated learning, 2019

  162. X. Ma, Z. Li, G. Liang, and P. Ke, Seismic data reconstruction based on Compressed Sensing, International Conference on Environment and Engineering Geophysics & Summit Forum of Chinese Academy of Engineering on Engineering Science and Technology, 2016

  163. Fu, L., Zhang, M., Liu, Z., Li, H.: Reconstruction of seismic data with missing traces using normalized Gaussian weighted filter. Neurocomputing 15(5), 2009–2020 (2018)

    Google Scholar 

  164. Song, A., Wang, C., Zhang, C., Zhang, J., Xiong, D.: Seismic Data Reconstruction via Recurrent Residual Multiscale Inference. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2022)

    Google Scholar 

  165. A. Siahkoohi, R. Kumar, and F. Herrmann, Seismic data reconstruction with generative adversarial networks, EAGE conference and exhibitio, 2018

  166. Liu, W., Cao, S., Li, G., He, Y.: Reconstruction of seismic data with missing traces based on local random sampling and curvelet transform. J. Appl. Geophys. 115, 129–139 (2015)

    ADS  Google Scholar 

  167. W. Jun, Z. Xin, Z. Houde, and W. Yinghui, Seismic data reconstruction based on super resolution convolutional neural network, SEG 2020 Workshop : Broadband and Wide-azimuth Deepwater Seismic Technology, 2020

  168. O. P. Villarreal, K. León, D. Espinosa, W. Agudelo, and H. Arguello, Compressive sensing seismic acquisition by using regular sampling in an orthogonal grid, IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2017

  169. Gan, S., Wang, S., Chen, Y., Chen, X., Huang, W., Chen, H.: Compressive sensing for seismic data reconstruction via fast projection onto convex sets based on seislet transform. J. Appl. Geophys. 130, 194–208 (2016)

    ADS  Google Scholar 

  170. I. Pawelec, M. Wakin, and P. Sava, Multichannel compressive sensing for seismic data reconstruction using joint sparsity, International Meeting for Applied Geoscience & Energy, 2022

  171. Zhang, M.: Time-lapse seismic data reconstruction using compressive sensing. Geophys. 86(5), 37–48 (2021)

    Google Scholar 

  172. Kragh, E.D., Christie, P.: Seismic repeatability, normalized RMS, and predictability. The leading edge 21(7), 640–647 (2002)

    Google Scholar 

  173. Wan, Y.G., Wu, Z.L., Zhou, G.W., Huang, J., Qin, L.X.: Research on seismic stress triggering. Acta Seismologica Sinica 15(5), 559–577 (2002)

    ADS  Google Scholar 

  174. C. L. Duval, and T. Rosten, Filter bank decomposition of seismic data with application to compression and denoising, SEG Technical Program Expanded Abstracts, 2000

  175. Liu, D., Wang, W., Wang, X., Wang, C., Pei, J., Chen, W.: Poststack seismic data denoising based on 3-D convolutional neural network. IEEE Trans. Geosci. Remote Sens. 58(3), 1598–1629 (2019)

    ADS  Google Scholar 

  176. Bonar, D., Sacchi, M.: Denoising seismic data using the nonlocal means algorithm. Geophysics 77(1), A5–A8 (2012)

    ADS  Google Scholar 

  177. L. Zhu, E. Liu, and J. H. McClellan, Seismic data denoising through multiscale and sparsity-promoting dictionary learning, Geophysics, vol. 80, no. 6, pp. WD45-WD57, 2015

  178. Cai, H.P., He, Z.H., Huang, D.J.: Seismic data denoising based on mixed time-frequency methods. Appl. Geophys. 8(4), 319–327 (2011)

    Google Scholar 

  179. Cao, S., Chen, X.: The second-generation wavelet transform and its application in denoising of seismic data. Appl. Geophys. 2(2), 70–74 (2005)

    MathSciNet  ADS  Google Scholar 

  180. B. F. Almubarak, Y. I. Aleisa, B. Liu, and A. H. Muqaibel, Global PCA for in-field compression of seismic data acquisition, IEEE-GCC Conference and Exhibition, 2017

  181. An, Y., Guo, J., Ye, Q., Childs, C., Walsh, J., Dong, R.: Deep convolutional neural network for automatic fault recognition from 3D seismic datasets. Comput. Geosci. 153, 104776 (2021)

    Google Scholar 

  182. Chen, Y., Zhang, M., Bai, M., Chen, W.: Improving the signal to noise ratio of seismological datasets by unsupervised machine learning. Seismolog. Res. Lett. 90(4), 1552–1564 (2019)

    Google Scholar 

  183. R. Aster, and C. Rowe, Automatic phase pick refinement and similar event association in large seismic datasets, Advances in seismic event location, 2000

  184. Wong, J., Han, L., Bancroft, J., Stewart, R.: Automatic Time-Picking of First Arrivals on Large Seismic Datasets, CREWES, Univ. Tech. Rep, Calgary, Calgary, AB, Canada (2009)

    Google Scholar 

  185. Cao, K., Liu, Y., Meng, G., Sun, Q.: An overview on edge computing research. IEEE access 8, 85714–85728 (2020)

    Google Scholar 

  186. Shi, W., Dustdar, S.: The promise of edge computing. Computer 49(5), 78–81 (2016)

    Google Scholar 

  187. T. N. Gia, L. Qingqing, J. P. Queralta, H. Tenhunen, Z. Zou, and T. Westerlund, Lossless compression techniques in edge computing for mission-critical applications in the IoT, IEEE International Conference on Mobile Computing and Ubiquitous Network, 2019

  188. H B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, Communication-efficient learning of deep networks from decentralized data, International Conference on Artificial Intelligence and Statistics, 2017

  189. Ahmed, L., Ahmad, K., Said, N., Qolomany, B., Qadir, J., Al-Fuqaha, A.: Active learning based federated learning for waste and natural disaster image classification. IEEE Access 8, 208518–208531 (2020)

    Google Scholar 

  190. B. Liu, B. Yan, Y. Zhou, Y. Yang, and Y. Zhang, Experiments of federated learning for covid-19 chest x-ray images, arXiv:2007.05592, 2020

  191. M. Yurochkin, M. Agarwal, S. Ghosh, K. Greenewald, N. Hoang, and Y. Khazaeni, Bayesian nonparametric federated learning of neural networks, International Conference on Machine Learning, 2019

  192. S. Li, Y. Cheng, Y. Liu, W. Wang, T. Chen, Bayesian nonparametric federated learning of neural networks, arXiv:1910.09933, 2019

  193. Zhang, H., Hanzo, L.: Federated learning assisted multi-UAV networks. IEEE Trans. Vehicular Technol. 69(11), 14104–14109 (2020)

    Google Scholar 

  194. A. G. Roy, S. Siddiqui, S. Pölsterl, N. Navab, and C. Wachinger, Braintorrent: A peer-to-peer environment for decentralized federated learning, arXiv:1905.06731, 2019

  195. P. Baheti, M. Sikka, K. V. Arya, and R. Rajesh, Federated Learning on Distributed Medical Records for Detection of Lung Nodules, VISIGRAPP, 2020

  196. https://www.tensorflow.org/federated

  197. C. He, S. Li, J. So, X. Zeng, M. Zhang, H. Wang, X. Wang, P. Vepakomma, A. Singh, H. Qiu, X. Zhu, J. Wang, L. Shen, P. Zhao, Y. Kang, Y. Liu, R. Raskar, Q. Yang, M. Annavaram, and S. Avestimehr, FedML: A research library and benchmark for federated machine learning, arXiv:2007.13518v4, 2020

  198. https://leaf.cmu.edu/

  199. Zhang, J., Xie, Y., Wu, Q., Xia, Y.: Medical image classification using synergic deep learning. Med. Image Anal. 54, 10–19 (2019)

    PubMed  Google Scholar 

  200. S. T. Krishna, and H. K. Kalluri, Deep learning and transfer learning approaches for image classification, International Journal of Recent Technology and Engineering (IJRTE), vol. 7, no. 5S4, pp. 427-432, 2019

  201. Wang, X.: Deep learning in object recognition, detection, and segmentation. Foundations Trends Signal Process. 8(4), 217–382 (2016)

    CAS  ADS  Google Scholar 

  202. N. Wang, W. Yuanyuan, and M. J. Er, Review on deep learning techniques for marine object recognition: Architectures and algorithms, Control Engineering Practice, vol. 118, 2022

  203. I. R.-i-Haque, and J. Neubert, Deep learning approaches to biomedical image segmentation, Informatics in Medicine Unlocked, vol. 18, 2020

  204. S. Minaee, Y. Y. Boykov, F. Porikli, A. J. Plaza, N. Kehtarnavaz, and D. Terzopoulos, Image segmentation using deep learning: A survey, IEEE transactions on pattern analysis and machine intelligence, 2021

  205. Bi, X., Chen, X.D., Zhang, Y., Liu, B.: Image compressed sensing based on wavelet transform in contourlet domain. Signal Process. 91(5), 1085–1092 (2011)

    Google Scholar 

  206. https://wiki.seg.org

  207. http://utam.gg.utah.edu/SeismicData/SeismicData.html

  208. http://energy.usgs.gov/GeochemistryGeophysics/

  209. https://wiki.seg.org/wiki/2004_BP_velocity_estimation_benchmark_model

  210. https://wiki.seg.org/wiki/SEG/EAGE_Salt_and_Overthrust_Models

  211. https://ge0mlib.com/software.htm

  212. https://wiki.seg.org/wiki/Waihapa-3D

  213. Mousa, W.A., Al-Shuhail, A.A.: Processing of seismic reflection data using MATLAB. Synthesis Lectures Signal Process. (SLSP) 5(1), 1–97 (2011)

    Google Scholar 

  214. Ricker, N.: The form and nature of seismic waves and the structure of seismograms. Geophysics 5(4), 348–366 (1940)

    ADS  Google Scholar 

  215. https://wiki.seg.org/index.php/Open_data

  216. http://www.usgs.gov/

  217. http://ahay.org/RSF/book/tongji/qswave/paper_html/

  218. A. P. Schiavon, K. S. D. S. Ribeiro, J. P. Navarro, and M. B. Vieira, 3D seismic data compression with multi-resolution autoencoders, SEG International Exposition and Annual Meeting, 2020

  219. Cichocki, A., Mandic, D., De Lathauwer, L., Zhou, G., Zhao, Q., Caiafa, C., Phan, H.A.: Tensor decompositions for signal processing applications: From two-way to multiway component analysis. IEEE Signal Process. Mag. 32(2), 145–163 (2015)

    ADS  Google Scholar 

  220. H. Luschgy, and G. Pages, Functional quantization of Gaussian processes, Journal of Functional Analysis, vol. 196, no. 2, 2002

  221. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    PubMed  ADS  Google Scholar 

  222. Z. Wang, E. P. Simoncelli, and A. C. Bovik, Multiscale structural similarity for image quality assessment, Conference Record of the Asilomar Conference on Signals, Systems & Computers, 2003

  223. https://dataunderground.org/dataset/teapot-dome/resource/f78082c6-60b8-4489-a832-2f305e55a109

  224. https://dataunderground.org/dataset/teapot-dome/resource/a3dd50d9-21bd-4d6d-82b4-029bf2b1b300

  225. https://gdr.openei.org/submissions/1141

  226. https://github.com/INGV/instance

  227. https://www.kaggle.com/datasets/isevilla/stanford-earthquake-dataset-stead

  228. J. Mairal, and F. Bach, Online dictionary learning for sparse coding, International Conference on Machine Learning, 2009

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Dorsaf Sebai: Conceived and designed the analysis, contributed data and analysis tools, performed the analysis, wrote the paper, and reviewed the manuscript. Manel Zouaoui: Collected the data, and contributed data and analysis tools. Faouzi Ghorbel: Performed the analysis, and reviewed the manuscript.

Corresponding author

Correspondence to Dorsaf Sebai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

Not applicable.

Additional information

Communicated by Q. Shen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sebai, D., Zouaoui, M. & Ghorbel, F. Seismic data compression: an overview. Multimedia Systems 30, 38 (2024). https://doi.org/10.1007/s00530-023-01233-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00530-023-01233-4

Keywords

Navigation