Skip to main content
Log in

Lossy image compression based on efficient multiplier-less 8-points DCT

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

This paper presents an approximate multiplication-free of discrete cosine transform (DCT) for still image compression. The introduction of null elements into a specified integer DCT leads to a new low complexity, faster and more efficient transform. Furthermore, an efficient fast algorithm primarily involving a small amount of arithmetical computation is well developed as no multiplications are required, with only 18 additions and 6-bit shift operations, thus ensuring a reduction of 25%. The orthogonality property is also preserved. Experimental results show that the proposed transform, with low computational complexity, achieves good image compression performance compared to its original transform. As a result, it outperforms other existing transforms having the same number of arithmetical operations while ensuring a good trade-off between computational complexity and performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahmed, N., Natarajan, T., Rao, K.R.: Discrete cosine transform. IEEE Trans. Comput. 100, 90–93 (1974)

    Article  MathSciNet  Google Scholar 

  2. Britanak, V., Yip, P.C., Rao, K.R.: Discrete cosine and sine transforms: general properties, fast algorithms and integer approximations. Elsevier, Amsterdam (2010)

    Google Scholar 

  3. Wallace, G.K.: The JPEG still picture compression standard. IEEE Trans. Consum. Electron. 38, xviii–xxxiv (1992)

    Article  Google Scholar 

  4. Hosny, K.M.: Fast computation of accurate Zernike moments. J. Real-Time Image Process. 3, 97–107 (2008)

    Article  Google Scholar 

  5. ITU: ITU-T Home : Study groups : ITU-T Recommendations : ITU-T H.265 (04/2013). Retrieved 2013-04-16. 265 (2013)

  6. Mentzer, F., Toderici, G., Tschannen, M., Agustsson, E.: High-fidelity generative image compression. Adv. Neural Inf. Process. Syst. (2020)

  7. Yeo, Y.-J., Shin, Y.-G., Sagong, M.-C., Kim, S.-W., Ko, S.-J.: Simple yet effective way for improving the performance of lossy image compression. IEEE Signal Process. Lett. 27, 530–534 (2020)

    Article  Google Scholar 

  8. Taylor, C.N., Panigrahi, D., Dey, S.: Design of an adaptive architecture for energy efficient wireless image communication. In: International Workshop on Embedded Computer Systems, pp. 260–273. Springer (2001)

  9. Arai, Y., Agui, T., Nakajima, M.: A fast DCT-SQ scheme for images. IEICE Trans. 71, 1095–1097 (1988)

    Google Scholar 

  10. Loeffler, C., Ligtenberg, A., Moschytz, G.S.: Practical fast 1-D DCT algorithms with 11 multiplications. In: International Conference on Acoustics, Speech, and Signal Processing, pp. 988–991. IEEE (1989)

  11. Lee, B.: A new algorithm to compute the discrete cosine transform. IEEE Trans. Acoust. 32, 1243–1245 (1984)

    MATH  Google Scholar 

  12. Yuan, W., Hao, P., Xu, C.: Matrix factorization for fast DCT algorithms. In: 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, pp. III–III. IEEE (2006)

  13. Wahid, K.A., Dimitrov, V.S., Jullien, G.A.: On the error-free realization of a scaled DCT algorithm and its VLSI implementation. IEEE Trans. Circuits Syst II Express Briefs. 54, 700–704 (2007)

    Article  Google Scholar 

  14. Haweel, T.I.: A new square wave transform based on the DCT. Signal Process. 81, 2309–2319 (2001)

    Article  Google Scholar 

  15. Brahimi, N., Bouden, T., Brahimi, T.L.B.: A novel andd efficient 8-point DCT approximation for image compression. Multimed. Tools Appl. 79, 7615–7631 (2020)

    Article  Google Scholar 

  16. Bouguezel, S., Ahmad, M.O., Swamy, M.N.S.: A multiplication-free transform for image compression. In: 2008 2nd International Conference on Signals, Circuits and Systems, pp. 1–4. IEEE (2008)

  17. Bouguezel, S., Ahmad, M.O., Swamy, M.N.S.: A fast 8 × 8 transform for image compression. In: 2009 International Conference on Microelectronics-ICM, pp. 74–77. IEEE (2009)

  18. Bouguezel, S., Ahmad, M.O., Swamy, M.N.S.: A low-complexity parametric transform for image compression. In: 2011 IEEE International Symposium of Circuits and Systems (ISCAS), pp. 2145–2148. IEEE (2011)

  19. Bouguezel, S., Ahmad, M.O., Swamy, M.N.S.: A novel transform for image compression. In: 2010 53rd IEEE International Midwest Symposium on Circuits and Systems, pp. 509–512. IEEE (2010)

  20. Bouguezel, S., Ahmad, M.O., Swamy, M.N.S.: Binary discrete cosine and Hartley transforms. IEEE Trans. Circuits Syst. I Regul. Pap. 60, 989–1002 (2012)

    Article  MathSciNet  Google Scholar 

  21. Cintra, R.J., Bayer, F.M., Tablada, C.J.: Low-complexity 8-point DCT approximations based on integer functions. Signal Process. 99, 201–214 (2014)

    Article  Google Scholar 

  22. Potluri, U.S., Madanayake, A., Cintra, R.J., Bayer, F.M., Kulasekera, S., Edirisuriya, A.: Improved 8-point approximate DCT for image and video compression requiring only 14 additions. IEEE Trans. Circuits Syst. I Regul. Pap. 61, 1727–1740 (2014)

    Article  Google Scholar 

  23. Tamboli, P., Shinde, A.: A low complexity 8 × 8 DCT transform for image compression. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 4, 6185–6190 (2015)

    Google Scholar 

  24. Bayer, F.M., Cintra, R.J.: DCT-like transform for image compression requires 14 additions only. Electron. Lett. 48, 919–921 (2012)

    Article  Google Scholar 

  25. Coutinho, V.A., Cintra, R.J., Bayer, F.M., Kulasekera, S., Madanayake, A.: A multiplierless pruned DCT-like transformation for image and video compression that requires ten additions only. J. Real-Time Image Process. 12, 247–255 (2016)

    Article  Google Scholar 

  26. Araar, C., Ghanemi, S., Benmohammed, M., Atoui, H.: Pruned improved eight-point approximate DCT for image encoding in visual sensor networks requiring only ten additions. J. Real-Time Image Process. 17, 1–12 (2019)

    Google Scholar 

  27. Oliveira, R.S., Cintra, R.J., Bayer, F.M., da Silveira, T.L.T., Madanayake, A., Leite, A.: Low-complexity 8-point DCT approximation based on angle similarity for image and video coding. Multidimens. Syst. Signal Process. 30, 1363–1394 (2019)

    Article  MathSciNet  Google Scholar 

  28. Blahut, R.E.: Fast algorithms for signal processing. Cambridge University Press (2010)

  29. Eskicioglu, A.M., Fisher, P.S.: Image quality measures and their performance. IEEE Trans. Commun. 43, 2959–2965 (1995). https://doi.org/10.1109/26.477498

    Article  Google Scholar 

  30. Grgic, S., Mrak, M., Grgic, M.: Comparison of jpeg image coders. In: Proceedings of the 3rd International Symposium on Video Processing and Multimedia Communications, pp. 79–85 (2001)

  31. Haweel, R.T., El-Kilani, W.S., Ramadan, H.H.: Fast approximate DCT with GPU implementation for image compression. J. Vis. Commun. Image Represent. 40, 357–365 (2016)

    Article  Google Scholar 

  32. Ezhilarasi, R., Venkatalakshmi, K., Khanth, B.P.: Enhanced approximate discrete cosine transforms for image compression and multimedia applications. Multimed. Tools Appl. 79, 8539–8552 (2018)

    Article  Google Scholar 

  33. Canterle, D.R., da Silveira, T.L.T., Bayer, F.M., Cintra, R.J.: A Multiparametric Class of Low-complexity Transforms for Image and Video Coding. Signal Process. 176, 107685 (2020)

    Article  Google Scholar 

  34. Image Databases. http://www.imageprocessingplace.com/root_files_V3/image_databases.htm

  35. CVG - UGR - Image database. http://decsai.ugr.es/cvg/dbimagenes/g512.php

  36. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)

    Article  Google Scholar 

  37. Robinson, J., Kecman, V.: Combining support vector machine learning with the discrete cosine transform in image compression. IEEE Trans. Neural Networks. 14, 950–958 (2003)

    Article  Google Scholar 

  38. Mandyam, G., Ahmed, N., Magotra, N.: Lossless image compression using the discrete cosine transform. J. Vis. Commun. Image Represent. 8, 21–26 (1997)

    Article  Google Scholar 

  39. Bouguezel, S., Ahmad, M.O., Swamy, M.N.S.: Low-complexity 8 × 8 transform for image compression. Electron. Lett. 44, 1249–1250 (2008)

    Article  Google Scholar 

  40. Andrushia, A.D., Thangarjan, R.: Saliency-based image compression using Walsh–Hadamard transform (WHT). In: Biologically rationalized computing techniques for image processing applications, pp. 21–42. Springer, Berlin (2018)

    Chapter  Google Scholar 

  41. Oliveira, P.A.M., Cintra, R.J., Bayer, F.M., Kulasekera, S., Madanayake, A.: Low-complexity image and video coding based on an approximate discrete Tchebichef transform. IEEE Trans. Circuits Syst. Video Technol. 27, 1066–1076 (2016)

    Article  Google Scholar 

  42. Kouadria, N., Mechouek, K., Harize, S., Doghmane, N.: Region-of-interest based image compression using the discrete Tchebichef transform in wireless visual sensor networks. Comput. Electr. Eng. 73, 194–208 (2019)

    Article  Google Scholar 

  43. Lee, M., Kaveh, M.: Fast Hadamard transform based on a simple matrix factorization. IEEE Trans. Acoust. 34, 1666–1667 (1986)

    Article  Google Scholar 

  44. Oliveira, P.A.M., Cintra, R.J., Bayer, F.M., Kulasekera, S., Madanayake, A.: A discrete Tchebichef transform approximation for image and video coding. IEEE Signal Process. Lett. 22, 1137–1141 (2015)

    Article  Google Scholar 

  45. Yan, C., Gong, B., Wei, Y., Gao, Y.: Deep multi-view enhancement hashing for image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabila Brahimi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Y. Zhang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brahimi, N., Bouden, T., Brahimi, T. et al. Lossy image compression based on efficient multiplier-less 8-points DCT. Multimedia Systems 28, 171–182 (2022). https://doi.org/10.1007/s00530-021-00762-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-021-00762-0

Keywords

Navigation