Skip to main content
Log in

Robust and fast image hashing with two-dimensional PCA

  • Special Issue Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Image hashing is a useful technology of many multimedia systems, such as image retrieval, image copy detection, multimedia forensics and image authentication. Most of the existing hashing algorithms do not reach a good classification between robustness and discrimination and some hashing algorithms based on dimensionality reduction have high computational cost. To solve these problems, we propose a robust and fast image hashing based on two-dimensional (2D) principal component analysis (PCA) and saliency map. The saliency map determined by a visual attention model called LC (luminance contrast) method can ensure good robustness of our hashing. Since 2D PCA is a fast and efficient technique of dimensionality reduction, the use of 2D PCA helps to learn a compact and discriminative code and provide a fast speed of our hashing. Extensive experiments are carried out to validate the performances of our hashing. Classification comparison shows that our hashing is better than some state-of-the-art algorithms. Computational time comparison illustrates that our hashing outperforms some compared algorithms based on dimensionality reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Shen, H., Wang, B., Wang, Z., Yang, Y., Shen, F., Huang, Z., Shen, H.: Bidirectional discrete matrix factorization hashing for image search. IEEE Trans. Cybern. 50(9), 4157–4169 (2020)

    Article  Google Scholar 

  2. Lin, M., Ji, R., Chen, S., Sun, X., Lin, C.-W.: Similarity-preserving linkage hashing for online image retrieval. IEEE Trans. Image Process. 29, 5289–5300 (2020)

    Article  MathSciNet  Google Scholar 

  3. Lu, C., Hsu, C.: Geometric distortionresilient image hashing scheme and its applications on copy detection and authentication. Multimed. Syst. 11, 159–173 (2005)

    Article  Google Scholar 

  4. Norouzi, B., Seyedzadeh, S.M., Mirzakuchaki, S.: A novel image encryption based on hash function with only two-round diffusion process. Multimed. Syst. 20, 45–64 (2014)

    Article  Google Scholar 

  5. Garcia, J.: An evaluation of side-information assisted forensic hash matching. In: Proceedings of 2014 38th Annual IEEE International Computer Software and Applications Conference Workshops (COMPSACW 2014), pp. 331–336. Vasteras, Sweden (2014)

  6. Wang, C., Wang, X., Xia, Z.: Geometrically invariant image watermarking based on fast Radial Harmonic Fourier Moments. Signal Process. Image Commun. 45, 10–23 (2016)

    Article  Google Scholar 

  7. Wang, X., Feng, L., Zhao, H.: Fast image encryption algorithm based on parallel computing system. Inf. Sci. 486, 340–358 (2019)

    Article  Google Scholar 

  8. Wang, X., Gao, S.: Image encryption algorithm based on the matrix semi-tensor product with a compound secret key produced by a Boolean network. Inf. Sci. 539, 195–214 (2020)

    Article  MathSciNet  Google Scholar 

  9. Wang, X., Gao, S.: Image encryption algorithm for synchronously updating Boolean networks based on matrix semi-tensor product theory. Inf. Sci. 507, 16–36 (2020)

    Article  MathSciNet  Google Scholar 

  10. Wang, C., Wang, X., Xia, Z., Zhang, C.: Ternary radial harmonic Fourier moments based robust stereo image zero-watermarking algorithm. Inf. Sci. 470, 109–120 (2019)

    Article  Google Scholar 

  11. Wang, C., Wang, X., Xia, Z., Ma, B., Shi, Y.: Image description with polar harmonic Fourier moments. IEEE Trans. Circuits Syst (2019). https://doi.org/10.1109/TCSVT.2019.2960507

    Article  Google Scholar 

  12. Venkatesan, R., Koon, S.-M., Jakubowski, M. H.,Moulin, P.: Robust image hashing. In: Proceedings of the IEEE International Conference on Image Processing (ICIP 2000), pp. 664−666. Vancouver, BC, Canada (2000)

  13. Tang, Z., Chen, L., Zhang, X., Zhang, S.: Robust image hashing with tensor decomposition. IEEE Trans. Knowl. Data Eng. 31(3), 549–560 (2019)

    Article  Google Scholar 

  14. Ouyang, J., Coatrieux, G., Shu, H.: Robust hashing for image authentication using quaternion discrete Fourier transform and log-polar transform. Digit. Signal Process. 41, 98–109 (2015)

    Article  Google Scholar 

  15. Tang, Z., Huang, Z., Yao, H., Zhang, X., Chen, L., Yu, C.: Perceptual image hashing with weighted DWT features for reduced-reference image quality assessment. Comput. J. 61(11), 1695–1709 (2018)

    Article  Google Scholar 

  16. Swaminathan, A., Mao, Y., Wu, M.: Robust and secure image hashing. IEEE Trans. Inf. Forensic Secur. 1(2), 215–230 (2006)

    Article  Google Scholar 

  17. Tang, Z., Zhang, X., Zhang, S.: Robust perceptual image hashing based on ring partition and NMF. IEEE Trans. Knowl. Data Eng. 26(3), 711–724 (2014)

    Article  Google Scholar 

  18. Ou, Y., Rhee, K.H.: A key-dependent secure image hashing scheme by using Radon transform. In: Proceedings of 2009 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS 2009), pp. 595–598. Kanazawa, Japan (2009)

  19. Kozat, S.S., Venkatesan, R., Mihcak, M.K.: Robust perceptual image hashing via matrix invariants. In: Proceedings of 2004 International Conference on Image Processing (ICIP 2004), pp. 3443–3446. Singapore (2004)

  20. Monga, V., Evans, B.L.: Perceptual image hashing via feature points: performance evaluation and tradeoffs. IEEE Trans. Image Process. 15(11), 3452–3465 (2006)

    Article  Google Scholar 

  21. Tang, Z., Zhang, X., Li, X., Zhang, S.: Robust image hashing with ring partition and invariant vector distance. IEEE Trans. Inf. Forensic Secur. 11(1), 200–214 (2016)

    Article  Google Scholar 

  22. Davarzani, R., Mozaffari, S., Yaghmaie, K.: Perceptual image hashing using center-symmetric local binary patterns. Multimed. Tools Appl. 75(8), 4639–4667 (2016)

    Article  Google Scholar 

  23. Tang, Z., Lao, H., Zhang, X., Liu, K.: Robust image hashing via DCT and LLE. Comput. Secur. 62, 133–148 (2016)

    Article  Google Scholar 

  24. Li, Y., Lu, Z., Zhu, C., Niu, X.: Robust image hashing based on random gabor filtering and dithered lattice vector quantization. IEEE Trans. Image Process. 21(4), 1963–1980 (2012)

    Article  MathSciNet  Google Scholar 

  25. Tang, Z., Huang, Z., Zhang, X., Lao, H.: Robust image hashing with multidimensional scaling. Signal Process. 137, 240–250 (2017)

    Article  Google Scholar 

  26. Tang, Z., Yu, M., Yao, H., Zhang, H., Yu, C., Zhang, X.: Robust image hashing with singular values of quaternion SVD. Comput. J. (2020). https://doi.org/10.1093/comjnl/bxz127

    Article  Google Scholar 

  27. Qin, C., Chen, X., Dong, J., Zhang, X.: Perceptual image hashing with selective sampling for salient structure features. Displays 45, 26–37 (2016)

    Article  Google Scholar 

  28. Huang, Z., Liu, S.: Robustness and discrimination oriented hashing combining texture and invariant vector Distance. In: Proceedings of the 2018 ACM International Conference on Multimedia (MM 2018), pp.1389–1397. Seoul, Republic of Korea (2018)

  29. Yan, Z., Xiaoran, Y.: Perceptual image hashing based on color structure and intensity gradient. IEEE Access 8, 26041–26053 (2020)

    Article  Google Scholar 

  30. Tang, Z., Yu, Y., Zhang, H., Yu, M., Yu, C., Zhang, X.: Robust image hashing via visual attention model and ring partition. Math. Biosci. Eng. 16(5), 6103–6120 (2019)

    Article  MathSciNet  Google Scholar 

  31. Abdullahi, S.M., Wang, H., Li, T.: Fractal coding-based robust and alignment-free fingerprint image hashing. IEEE Trans. Inf. Forensic Secur. 15, 2587–2601 (2020)

    Article  Google Scholar 

  32. Yan, C., Pun, C., Yuan, X.: Quaternion-based image hashing for adaptive tampering localization. IEEE Trans. Inf. Forensic Secur. 11(12), 2664–2677 (2016)

    Article  Google Scholar 

  33. Shen, H., Liu, L., Yang, Y., Xu, X., Huang, Z., Shen, F., Hong, R.: Exploiting subspace relation in semantic labels for cross-modal hashing. IEEE Trans. Knowl. Data Eng. (2020). https://doi.org/10.1109/TKDE.2020.2970050

    Article  Google Scholar 

  34. Luo, Y., Huang, Z., Li, Y., Shen, F., Yang, Y., Cui, P.: Collaborative learning for extremely low bit asymmetric hashing. IEEE Trans. Knowl. Data Eng. (2020). https://doi.org/10.1109/TKDE.2020.2977633

    Article  Google Scholar 

  35. Zhai, Y., Shah, M.: Visual attention detection in video sequences using spatiotemporal cues. In: Proceedings of the 14th Annual ACM International Conference on Multimedia (MM 2006), pp. 815–824. Santa Barbara, CA, USA (2006)

  36. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  37. Cheng, M., Mitra, N., Huang, X., Torr, P., Hu, S.: Global Contrast Based Salient Region Detection. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 569–582 (2015)

    Article  Google Scholar 

  38. Achanta, R., Hemami, S., Estrada, F., Suesstrunk, S., Frequency-tuned salient region detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CPVR 2009), pp. 1597–1604. Miami, Florida, USA (2009)

  39. Hou, X., Zhang, L.: Saliency detection: A spectral residual approach. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2007), pp. 1–8. Minneapolis, Minnesota, USA (2007)

  40. Vikram, T., Tscherepanow, M., Wrede, B.: A saliency map based on sampling an image into random rectangular regions of interest. Pattern Recognit. 45(9), 3114–3124 (2012)

    Article  Google Scholar 

  41. Yang, J., Zhang, D., Frangi, A., Yang, J.Y.: Two-dimensional PCA: A new approach to appearance-based face representation and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 131–137 (2004)

    Article  Google Scholar 

  42. Zhou, S., Zhang, D.: Bilateral Angle 2DPCA for Face Recognition. IEEE Signal Process. Lett. 26(2), 317–321 (2019)

    Article  MathSciNet  Google Scholar 

  43. Sarapakdi, S., Nangsue, P., Pluempitiwirivawej, C.: Occluded facial recognition with 2DPCA based convolutional neural network. In: Proceedings of 2019 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia 2019), pp. 135–138. Bangkok, Thailand (2019)

  44. Hamid, I., Nawaz, Q., Zia, M.A., Mumtaz, I.: Pixel-level Multi-focus image fusion algorithm based on 2DPCA. In: Proceedings of 2019 IEEE 11th International Conference on Communication Software and Networks (ICCSN 2019), pp. 362–365. Chongqing, China (2019)

  45. Quang, N., Nguyen, B., Dao, S., Unnikrishnan, B., Dhingra, R., Ravichandran, S., Satpathy, S., Raja, P., Chua, M.: Deep learning models for tuberculosis detection from chest X-ray images. In: 2019 26th International Conference on Telecommunications(ICT 2019), pp. 381–385. Hanoi,Vietnam (2019)

  46. Kodak lossless true color image suite. https://r0k.us/graphics/kodak/ (2017). Accessed 15April 2017

  47. Petitcolas, F.A.P.: Watermarking scheme evaluation. Algorithms need common benchmarks. IEEE Signal Process. Mag. 17(5), 58–64 (2000)

    Article  Google Scholar 

  48. Schaefer, G., Stich, M.: UCID. An uncompressed colour image database. Proc. SPIE 5307, 472–480 (2004)

    Article  Google Scholar 

  49. Ground Truth Database, https://www.cs.washington.edu/research/imagedatabase/groundtruth/ (2008). Accessed 8 May 2008

  50. Tang, Z., Dai, Y., Zhang, X., Huang, L., Yang, F.: Robust image hashing via colour vector angles and discrete wavelet transform. IET Image Process. 8(3), 142–149 (2014)

    Article  Google Scholar 

  51. Qin, C., Sun, M., Chang, C.-C.: Perceptual hashing for color images based on hybrid extraction of structural features. Signal Process. 142, 194–205 (2018)

    Article  Google Scholar 

  52. Fawcett, T.: An introduction to ROC analysis. Pattern Recognit. Lett. 27(8), 861–874 (2006)

    Article  MathSciNet  Google Scholar 

  53. Huang, X., Liu, X., Wang, G., Su, M.: A robust image hashing with enhanced randomness by using random walk on zigzag blocking. In: Proceedings of 2016 IEEE Trustcom/BigDataSe/ISPA (Trustcom 2016), pp. 14–18.Tianjin, China (2016)

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (61962008, 61762017,61762031,61762015), Guangxi “Bagui Scholar” Team for Innovation and Research, the Guangxi Talent Highland Project of Big Data Intelligence and Application, the Guangxi Natural Science Foundation (2017GXNSFAA198222), and Guangxi Collaborative Innovation Center of Multi-source Information Integration and Intelligent Processing. The authors would like to thank the anonymous referees for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenjun Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, X., Tang, Z., Xie, X. et al. Robust and fast image hashing with two-dimensional PCA. Multimedia Systems 27, 389–401 (2021). https://doi.org/10.1007/s00530-020-00696-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-020-00696-z

Keywords

Navigation