Skip to main content
Log in

Accurate body-part reconstruction from a single depth image

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Human pose reconstruction using depth images has received much attention for human-centric applications. Body-part labeling at pixel-level has shown to be efficient for human pose reconstruction. This paper presents an accurate human pose reconstruction method from a single depth image by combining body-part labeling and nearest pose-matching techniques. New pixel-level depth difference and local curvature-encoding features are introduced to provide more contextual depth information for pixel-level body-part labeling. To reduce the misclassification error, inspired by pose-matching techniques, a corrective step is also proposed. The method extracts depth region proposals from a reference pose and finds the best match using PCT coefficients to correct uncertain labels. Tests on a set of synthetic and natural depth poses showed improved accuracy of body-part labeling compared to the state-of-the-art methods. In addition, in comparison with the previous methods and the Kinect camera, an improved accuracy for human range of motion measurement was obtained .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. https://doi.org/10.6084/m9.figshare.5886613.

References

  1. Xia, S., Gao, L., Lai, Y.-K., Yuan, M.-Z., Chai, J.: A survey on human performance capture and animation. J. Comput. Sci. Technol. 32(3), 536–554 (2017)

    Article  Google Scholar 

  2. Mündermann, L., Corazza, S., Andriacchi, T.P.: The evolution of methods for the capture of human movement leading to markerless motion capture for biomechanical applications. J. NeuroEng. Rehabil. 3(1), 6 (2006)

    Article  Google Scholar 

  3. Han, F., Reily, B., Hoff, W., Zhang, H.: Space-time representation of people based on 3D skeletal data: a review. Comput. Vis. Image Underst. 158, 85–105 (2017)

    Article  Google Scholar 

  4. Presti, L.L., La Cascia, M.: 3D skeleton-based human action classification: a survey. Pattern Recognit. 53, 130–147 (2016)

    Article  Google Scholar 

  5. Wang, Y., Liu, Y., Tong, X., Dai, Q., Tan, P.: Outdoor markerless motion capture with sparse handheld video cameras. IEEE Trans. Vis. Comput. Graph. PP(99), 1 (2017)

    Google Scholar 

  6. Li, J., Grandner, M.A., Chang, Y.-P., Jungquist, C., Porock, D.: Person-centered dementia care and sleep in assisted living residents with dementia: a pilot study. Behav. Sleep Med. 15(2), 97–113 (2017)

    Article  Google Scholar 

  7. Knippenberg, E., Verbrugghe, J., Lamers, I., Palmaers, S., Timmermans, A., Spooren, A.: Markerless motion capture systems as training device in neurological rehabilitation: a systematic review of their use, application, target population and efficacy. J. Neuroengi. Rehabil. 14(1), 61 (2017)

    Article  Google Scholar 

  8. Shotton, J., Sharp, T., Kipman, A., Fitzgibbon, A., Finocchio, M., Blake, A., Cook, M., Moore, R.: Real-time human pose recognition in parts from single depth images. Commun. ACM. 56(1), 116–124 (2013)

    Article  Google Scholar 

  9. Consortium, O., OpenNI, http://www.openni.ru. 17 Mar 2018

  10. Mousavi Hondori, H., Khademi, M.: A review on technical and clinical impact of microsoft kinect on physical therapy and rehabilitation. J. Med. Eng. (2014)

  11. Zhou, H., Hu, H.: Human motion tracking for rehabilitation: a survey. Biomed. Signal Process. Control 3(1), 1–18 (2008)

    Article  Google Scholar 

  12. Lee, S.H., Yoon, C., Chung, S.G., Kim, H.C., Kwak, Y., Park, H.: Kim K.: Measurement of shoulder range of motion in patients with adhesive capsulitis using a kinect. PloS ONE. 10 (6), e0129398 (2015)

  13. Pastor, I., Hayes, H.A., Bamberg, S.J.: A feasibility study of an upper limb rehabilitation system using kinect and computer games. In: Engineering in Medicine and Biology Society (EMBC), Annual International Conference of the IEEE, pp 1286–1289 (2012)

  14. Da Gama, A., Chaves, T., Figueiredo, L., Teichrieb, V. Guidance and movement correction based on therapeutics movements for motor rehabilitation support systems. In: Virtual and Augmented Reality (SVR), 14th Symposium on IEEE, pp 191–200 (2012)

  15. Wei, X., Zhang, P., Chai, J.: Accurate realtime full-body motion capture using a single depth camera. ACM Trans. Graph. (TOG). 31(6), 188 (2012)

    Article  Google Scholar 

  16. Liang, H., Yuan, J., Thalmann, D.: Parsing the hand in depth images. IEEE Trans. Multimedi. 16(5), 1241–1253 (2014)

    Article  Google Scholar 

  17. Gajdosik, R.L., Bohannon, R.W.: Clinical measurement of range of motion: review of goniometry emphasizing reliability and validity. Phys. Ther. 67(12), 1867–1872 (1987)

    Article  Google Scholar 

  18. Zulkarnain, R.F., Kim, G.-Y., Adikrishna, A., Hong, H.P., Kim, Y.J., Jeon, I.-H.: Digital data acquisition of shoulder range of motion and arm motion smoothness using Kinect v2. J. Shoulder Elb. Surg. 26(5), 895–901 (2017)

    Article  Google Scholar 

  19. Manghisi, V.M., Uva, A.E., Fiorentino, M., Bevilacqua, V., Trotta, G.F., Monno, G.: Real time RULA assessment using Kinect v2 sensor. Appl. Ergon. 65, 481–491 (2017)

    Article  Google Scholar 

  20. Reither, L.R., Foreman, M.H., Migotsky, N., Haddix, C., Engsberg, J.R.: Upper extremity movement reliability and validity of the Kinect version 2. Disabil. Rehabil. Assist. Technol. 13(1), 54–59 (2018)

    Article  Google Scholar 

  21. Bonnechere, B., Jansen, B., Salvia, P., Bouzahouene, H., Omelina, L., Moiseev, F., Sholukha, V., Cornelis, J., Rooze, M., Jan, S.V.S.: Validity and reliability of the Kinect within functional assessment activities: comparison with standard stereophotogrammetry. Gait Posture 39(1), 593–598 (2014)

    Article  Google Scholar 

  22. Ye, M., Zhang, Q., Wang, L., Zhu, J., Yang, R., Gall, J.: A survey on human motion analysis from depth data. In: Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Applications. Springer, Berlin, Heidelberg, pp 149–187 (2013)

    Google Scholar 

  23. Zhang, Q., Song, X., Shao, X., Shibasaki, R., Zhao, H.: Unsupervised skeleton extraction and motion capture from 3D deformable matching. Neurocomputing 100, 170–182 (2013)

    Article  Google Scholar 

  24. Baak, A., Müller, M., Bharaj, G., Seidel, H.-P., Theobalt, C.: A data-driven approach for real-time full body pose reconstruction from a depth camera. In: IEEE International Conference on Computer Vision, Barcelona, Spain (2011)

  25. Taylor, J., Shotton, J., Sharp, T., Fitzgibbon, A.: The vitruvian manifold: inferring dense correspondences for one-shot human pose estimation. In: Computer Vision and Pattern Recognition (CVPR), IEEE Conference on, pp 103–110 (2012)b b

  26. Ganapathi, V., Plagemann, C., Koller, D., Thrun, S.: Real-time human pose tracking from range data. In: European Conference on Computer Vision, Springer, pp 738–751 (2012)

  27. Ye, M., Wang, X., Yang, R., Ren, L., Pollefeys, M.: Accurate 3d pose estimation from a single depth image. In: IEEE International Conference on Computer Vision (ICCV), pp 731–738 (2011)

  28. Cheng, K.-L., Tong, R.-F., Tang, M., Qian, J.-Y., Sarkis, M.: Parametric human body reconstruction based on sparse key points. IEEE Trans. Vis. Comput. Graph. 22(11), 2467–2479 (2016)

    Article  Google Scholar 

  29. Shafaei, A., Little, J.J.: Real-time human motion capture with multiple depth cameras. In: 13th Conference on IEEE Computer and Robot Vision (CRV), pp 24–31 (2016)

  30. Jiu, M., Wolf, C., Taylor, G., Baskurt, A.: Human body part estimation from depth images via spatially-constrained deep learning. Pattern Recognit. Lett. 50, 122–129 (2014)

    Article  Google Scholar 

  31. Sun, M., Kohli, P., Shotton, J.: Conditional regression forests for human pose estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 3394–3401 (2012)

  32. Girshick, R., Shotton, J., Kohli, P., Criminisi, A., Fitzgibbon, A.: Efficient regression of general-activity human poses from depth images. In: IEEE International Conference on Computer Vision (ICCV), pp 415–422 (2011)

  33. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., sstrunk, S.: SLIC Superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  34. Breiman, L.: Random forests. Machine learning. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  35. Xia, S., Zhang, Z., Su, L.: Cascade of full-body pose regression from single depth image at 100 FPS. arXiv:1711.08126v2 (2018)

  36. Yap, P.-T., Jiang, X., Kot, A.C.: Two-dimensional polar harmonic transforms for invariant image representation. IEEE Trans. Pattern Anal. Mach. Intell. 32(7), 1259–1270 (2010)

    Article  Google Scholar 

  37. CMU dataset. http://mocap.cs.cmu.edu. 17 Mar 2018

  38. Jiu, M., Wolf, C., Baskurt, A.: Integrating Spatial Layout of object parts into classification without pairwise terms-application to fast body parts estimation from depth images. In: VISAPP, pp 626–631 (2013)

  39. Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Scene parsing with multiscale feature learning, purity trees, and optimal covers. arXiv preprint arXiv 1202.2160 (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadian-Ghomsheh Ali.

Additional information

Communicated by Y. Zhang.

Appendix

Appendix

Definition of upper extremity functional exercises evaluated in this paper and ROM measurement formulations.

In the following, the figure and measurement criteria of each movement are described.

  1. 1.

    Waist bent person clings to his waist, his legs slightly open, and then moves to bend the waist. The calculated angle for this exercise is indicated in Fig. 10:

    $${\text{Waist}}\,{\text{bending}}={\theta _4}=t{g^{ - 1}}\left( {\frac{{l{x_{hd}}}}{{l{z_{rd}}}}} \right).$$
    (13)
  2. 2.

    Elbow flexion The hands are dropped and then bent from the elbow joint, as shown in Fig. 9. The move is completed when the fingers touch the shoulder:

    $${\text{Elbow~}}\,{\text{flexion}}\,1={\theta _1}={\cos ^{ - 1}}\left( {\frac{{D_{{{\text{eh}}}}^{2}+D_{{{\text{es}}}}^{2} - D_{{{\text{sh}}}}^{2}}}{{2{D_{{\text{eh}}}}{D_{{\text{es}}}}}}} \right)$$
    (14)
    $$Elbow~flexion2={\theta _2}={\cos ^{ - 1}}(\frac{{D_{{eh}}^{2}+D_{{es}}^{2} - D_{{sh}}^{2}}}{{2{D_{eh}}{D_{es}}}}).$$
    (15)
  3. 3.

    Shoulder horizontal abduction/adduction In this exercise, hands are pushed in the horizontal direction with respect to the camera until hands reach the opposite shoulder (adduction) and return to the initial position (abduction), as shown in Fig. 9:

    $${\text{Shoulder}}\,{\text{~horizontal}}\,{\text{~abduction}}={\theta _1}={\cos ^{ - 1}}\left( {\frac{{D_{{{\text{se}}}}^{2}+D_{{{\text{ns}}}}^{2} - D_{{{\text{ne}}}}^{2}}}{{2{D_{{\text{ns}}}}{D_{{\text{se}}}}}}} \right).$$
    (16)
  4. 4.

    Head rotation In this exercise, the head is rotated about the X-, Y-, and Z-axes. The head can be regarded as the local coordinate frame that identifies the X, Y, and Z axes (Fig. 9).

    $${\text{Head~}}\,{\text{rotatio}}{{\text{n}}_x}={\text{t}}{{\text{g}}^{ - 1}}\left( {\frac{{l{y_{hd}}}}{{l{z_{nd}}}}} \right)$$
    (17)
    $${\text{Head~}}\,{\text{rotatio}}{{\text{n}}_y}=t{g^{ - 1}}\left( {\frac{{l{y_{hd}}}}{{l{z_{nd}}}}} \right)$$
    (18)
    $${\text{head}}\,{\text{~rotatio}}{{\text{n}}_z}=t{g^{ - 1}}\left( {\frac{{l{x_{hd}}}}{{l{y_{nd}}}}} \right).$$
    (19)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farnoosh, A., Ali, NG. Accurate body-part reconstruction from a single depth image. Multimedia Systems 25, 165–176 (2019). https://doi.org/10.1007/s00530-018-0594-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-018-0594-9

Keywords

Navigation