Skip to main content
Log in

Convolutional deep learning for 3D object retrieval

  • Special Issue Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

In recent years, with the development of 3D technologies, 3D model retrieval has become a hot topic. The key point of 3D model retrieval is to extract robust feature for 3D model representation. In order to improve the effectiveness of method on 3D model retrieval, this paper proposes a feature extraction model based on convolutional neural networks (CNN). First, we extract a set of 2D images from 3D model to represent each 3D object. SIFT detector is utilized to detect interesting points from each 2D image and extract interesting patches to represent local information of each 3D model. X-means is leveraged to generate the CNN filters. Second, a single CNN layer learns low-level features which are then given as inputs to multiple recursive neural networks (RNN) in order to compose higher order features. RNNs can generate the final feature for 2D image representation. Finally, nearest neighbor is used to compute the similarity between different 3D models in order to handle the retrieval problem. Extensive comparison experiments were on the popular ETH and MV-RED 3D model datasets. The results demonstrate the superiority of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. http://media.tju.edu.cn/mvred/dataset1.html.

References

  1. Ankerst, M., Kastenmüller, G., Kriegel, H.-P., Seidl, T.: 3D shape histograms for similarity search and classification in spatial databases. In: Advances in spatial databases, pp. 207–226. Springer, Berlin (1999)

  2. Ansary, T.F., Daoudi, M., Vandeborre, J.P.: A bayesian 3-d search engine using adaptive views clustering. IEEE Trans. Multimed. 9(1), 78–88 (2007)

    Article  Google Scholar 

  3. Chen, D.-Y., Tian, X.-P., Shen, Y.-T., Ouhyoung, M.: On visual similarity based 3D model retrieval. Comput. Graph. Forum 22(3), 223–232 (2003)

    Article  Google Scholar 

  4. Chen, J.-Y., Lin, C.-H., Hsu, P.-C., Chen, C.-H.: Point cloud encoding for 3D building model retrieval. IEEE Trans. Multimed. 16(2), 337–345 (2014)

    Article  Google Scholar 

  5. Daras, P., Axenopoulos, A.: A 3D shape retrieval framework supporting multimodal queries. Int. J. Comput. Vis. 89(2–3), 229–247 (2010)

    Article  Google Scholar 

  6. Gao, Y., Dai, Q.: View-based 3D object retrieval: challenges and approaches. IEEE MultiMed. 21(3), 52–57 (2014)

    Article  Google Scholar 

  7. Gao, Y., Dai, Q., Zhang, N.Y.: 3D model comparison using spatial structure circular descriptor. Pattern Recognit. 43(3), 1142–1151 (2010)

    Article  MATH  Google Scholar 

  8. Gao, Y., Wang, M., Zha, Z.J., Tian, Q., Dai, Q., Zhang, N.: Less is more: efficient 3-D object retrieval with query view selection. IEEE Trans. Multimed. 13(5), 1007–1018 (2011)

    Article  Google Scholar 

  9. Gao, Y., Dai, Q., Wang, M., Zhang, N.: 3D model retrieval using weighted bipartite graph matching. Image Commun. 26(1), 39–47 (2011)

    Google Scholar 

  10. Gao, Y., Tang, J., Hong, R., Yan, S., Dai, Q., Zhang, N.Y., Chua, T.S.: Camera constraint-free view-based 3-D object retrieval. IEEE Trans. Image Process. 21(4), 2269–2281 (2012)

    Article  MathSciNet  Google Scholar 

  11. Gao, Y., Wang, M., Tao, D., Ji, R., Dai, Q.: 3-D object retrieval and recognition with hypergraph analysis. IEEE Trans. Image Process. 21(9), 4290–4303 (2012)

    Article  MathSciNet  Google Scholar 

  12. Gao, X., Lin, S., Wong, T.Y.: Automatic feature learning to grade nuclear cataracts based on deep learning. In: Computer Vision—ACCV 2014, pp. 632–642. Springer, Switzerland (2015)

    Google Scholar 

  13. Gao, Z., Zhang, H., Liu, A.A., Xu, G., Xue, Y.: Human action recognition on depth dataset. Neural Comput. Appl. (2015). doi:10.1007/s00521-015-2002-0

    Google Scholar 

  14. Guo, Y., Sohel, F., Bennamoun, M., Wan, J., Lu, M.: A novel local surface feature for 3D object recognition under clutter and occlusion. Inf. Sci. 293, 196–213 (2015)

    Article  Google Scholar 

  15. Hilaga, M., Shinagawa, Y., Komura, T., Kunii, T.L.: Topology matching for fully automatic similarity estimation of 3d shapes. In SIGGRAPH, pp. 203–212 (2001)

  16. Leibe, B., Schiele, B.: Analyzing appearance and contour based methods for object categorization. In: Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on, vol. 2, pp. II–409. IEEE (2003)

  17. Li, B., Lu, Y., Li, C., Godil, A., Schreck, T., Aono, M., Burtscher, M., Fu, H., Furuya, T., Johan, H., et al.: Extended large scale sketch-based 3D shape retrieval. Eurograph. Assoc. 73(4), 128–139 (2014)

    Google Scholar 

  18. Liu, A., Han, D.: Spatiotemporal sparsity induced similarity measure for human action recognition. JDCTA 4(8), 143–149 (2010)

    Article  Google Scholar 

  19. Liu, S., Liu, S., Cai, W., Che, H., Pujol, S., Kikinis, R., Fulham, M., Feng, D.: High-level feature based pet image retrieval with deep learning architecture. J. Nucl. Med. 55(supplement 1), 2028–2028 (2014)

    Google Scholar 

  20. Liu, A., Su, Y., Nie, W., Yang, Z.: Jointly learning multiple sequential dynamics for human action recognition. PLoS ONE 10(7), 1–21 (2014). doi:10.1371/journal.pone.013088

    Google Scholar 

  21. Liu, A., Su, Y., Jia, P., Gao, Z., Hao, T., Yang, Z.: Multiple/single-view human action recognition via part-induced multi-task structural learning. IEEE Trans. Cybern. 45(6), 1194–1208 (2015)

    Article  Google Scholar 

  22. Liu, A., Wang, Z., Nie, W., Su, Y.: Graph-based characteristic view set extraction and matching for 3D model retrieval. Inf. Sci. 320, 429–442 (2015)

    Article  Google Scholar 

  23. Liu, A., Nie, W., Su, Y., Ma, L., Hao, T., Yang, Z.: Coupled hidden conditional random fields for RGB-D human action recognition. Signal Process. 112, 74–82 (2015)

    Article  Google Scholar 

  24. Murugappan, S., Liu, H., Ramani, K.: Shape-it-up: hand gesture based creative expression of 3D shapes using intelligent generalized cylinders. Comput. Aided Des. 45(2), 277–287 (2013)

    Article  Google Scholar 

  25. Neverova, N., Wolf, C., Taylor, G.W., Nebout, F.: Multi-scale deep learning for gesture detection and localization. In: Computer Vision-ECCV 2014 Workshops, pp. 474–490. Springer (2014)

  26. Paquet, E., Rioux, M., Murching, A.M., Naveen, T., Tabatabai, A.J.: Description of shape information for 2-D and 3-D objects. Signal Process. Image Commun. 16(1–2), 103–122 (2000)

    Article  Google Scholar 

  27. Richter, R.M., Mulvany, M.J.: Comparison of hCRF and oCRF effects on cardiovascular responses after central, peripheral, and in vitro application. Peptides 16(5), 843–849 (1995)

    Article  Google Scholar 

  28. Shih, J.L., Lee, C.H., Wang, J.T.: A new 3D model retrieval approach based on the elevation descriptor. Pattern Recognit. 40(1), 283–295 (2007)

    Article  MATH  Google Scholar 

  29. Socher, R., Huval, B., Bath, B., Manning, C.D., Ng, A.Y.: Convolutional-recursive deep learning for 3D object classification. In: Advances in Neural Information Processing Systems. In: NIPS, pp. 665–673 (2012)

  30. Sun, Y., Wang, X., Tang, X.: Deep learning face representation from predicting 10,000 classes. In: IEEE conference on computer vision and pattern recognition (CVPR), 2014 IEEE pp. 1891–1898 (2014)

  31. Vandeborre, J.P., Couillet, V., Daoudi, M.: A practical approach for 3D model indexing by combining local and global invariants. In: 3DPVT, pp. 644–647 (2002)

  32. Vranic, D.V.: An improvement of rotation invariant 3D-shape based on functions on concentric spheres. ICIP 3, 757–760 (2003)

    Google Scholar 

  33. Wang, F., Lin, L., Tang, M.: A new sketch-based 3D model retrieval approach by using global and local features. Graph. Models 76(3), 128–139 (2014)

    Article  Google Scholar 

  34. Wang, X., Nie, W.: 3D model retrieval with weighted locality-constrained group sparse coding. Neurocomputing 151, 620–625 (2015)

    Article  Google Scholar 

  35. Xu, Q., Liu, Y., Li, X., Yang, Z., Wang, J., Sbert, M., Scopigno, R.: Browsing and exploration of video sequences: a new scheme for key frame extraction and 3D visualization using entropy based Jensen divergence. Inf. Sci. 278, 736–756 (2014)

    Article  MathSciNet  Google Scholar 

  36. Zhao, S., Yao, H., Yang, Y., Zhang, Y.: Affective image retrieval via multi-graph learning. In: Proceedings of the ACM international conference on multimedia, MM ’14, Orlando, FL, USA, November 03–07, 2014, pp. 1025–1028 (2014)

  37. Zhou, J.L., Zhou, M.Q., Geng, G.H.: 3D model retrieval based on distance classification histogram. Appl. Mech. Mater. 733, 931–934 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (61472275, 61170239, 61303208), the Tianjin Research Program of Application Foundation and Advanced Technology (15JCYBJC16200), and the Grant of Elite Scholar Program of Tianjin University (2014XRG-0046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anan Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, W., Cao, Q., Liu, A. et al. Convolutional deep learning for 3D object retrieval. Multimedia Systems 23, 325–332 (2017). https://doi.org/10.1007/s00530-015-0485-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-015-0485-2

Keywords

Navigation