Skip to main content
Log in

Riemannian metrics with prescribed volume and finite parts of Dirichlet spectrum

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we study the problem of prescribing Dirichlet eigenvalues on an arbitrary compact manifold M of dimension \(n\ge 3\) with a non-empty smooth boundary \(\partial M\). We show that for any finite increasing sequence of real numbers \(0<a_1<a_2 \le a_3 \le \cdots \le a_N\) and any positive number V, there exists a Riemannian metric g on M such that \(\textrm{Vol}(M,g)=V\) and \(\lambda ^\mathcal {D}_k(M,g)=a_k\) for any integer \(1 \le k \le N\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Arnol’d, V.: Modes and quasimodes. Funktsional’nyi Analiz i ego Prilozheniya 6(2), 12–20 (1972)

    MathSciNet  Google Scholar 

  2. Berdnikov, A.: Bounds on multiplicities of Laplace operator eigenvalues on surfaces. J. Spectr. Theory 2, 541–554 (2018)

    Article  MathSciNet  Google Scholar 

  3. Buser, P.: Geometry and Spectra of Compact Riemann Surfaces. Springer, Berlin (2010)

    Book  Google Scholar 

  4. Chen, D., Cheng, Q.: Extrinsic estimates for eigenvalues of the Laplace operator. J. Math. Soc. Japan 60, 325–339 (2008)

    Article  MathSciNet  Google Scholar 

  5. Colbois, B., Colin de Verdière, Y.: Sur la multiplicité de la première valeur propre d’une surface de Riemann à courbure constante. Commentarii Mathematici Helvetici 63, 194–208 (1988)

    Article  MathSciNet  Google Scholar 

  6. Colin de Verdière, Y.: Sur la multiplicité de la première valeur propre non nulle du Laplacien. Commentarii Mathematici Helvetici 61(1), 254–270 (1986)

    Article  MathSciNet  Google Scholar 

  7. Colin de Verdière, Y.: Construction de laplaciens dont une pertie finie du spectre est donnée. Annales scientifiques de l’école normale supérieure 20(4), 599–615 (1987)

    Article  MathSciNet  Google Scholar 

  8. Colin de Verdière, Y.: Sur une hypothèse de transversalité d’Arnold. Commentarii Mathematici Helvetici 63, 184–193 (1988)

    Article  MathSciNet  Google Scholar 

  9. Dahl, M.: Prescribing eigenvalues of the Dirac operator. Manuscripta Math. 118(2), 191–199 (2005)

    Article  MathSciNet  Google Scholar 

  10. Dodziuk, J., Pignataro, T., Randol, B., Sullivan, D.: Estimating small eigenvalues of Riemann surfaces. The legacy of Sonya–Kovalevskaya. Contemp. Math 1987(64), 93–121 (1985)

    Google Scholar 

  11. El Soufi, A., Harrell, E., Ilias, S.: Universal inequalities for the eigenvalues of Laplace and Schrödinger operators on submanifolds. Trans. Am. Math. Soc. 361, 2337–2350 (2009)

    Article  Google Scholar 

  12. Funano, K.: Some universal inequalities of eigenvalues and upper bounds for the \(L_{\infty }\) norm of eigenfunctions of the Laplacian (Preprint). arXiv: 2310.02938v2

  13. Hassannezhad, A., Kokarev, G., Polterovich, I.: Eigenvalue inequalities on Riemannian manifolds with a lower Ricci curvature bound. J. Spectr. Theory 6(4), 807–835 (2016)

    Article  MathSciNet  Google Scholar 

  14. He, X.: Prescription of finite Dirichlet eigenvalues and area on surface with boundary. J. Geom. Phys. 198, 105100 (2024)

    Article  MathSciNet  Google Scholar 

  15. Jammes, P.: Prescription de la multiplicité des valeurs propres du laplacien de Hodge-de Rham. Commentarii Mathematici Helvetici 86(4), 967–984 (2011)

    Article  MathSciNet  Google Scholar 

  16. Jammes, P.: Sur la multiplicité des valeurs propres du laplacien de Witten. Trans. Am. Math. Soc. 364(6), 2825–2845 (2012)

    Article  MathSciNet  Google Scholar 

  17. Jammes, P.: Prescription du spectre de Steklov dans une classe conforme. Anal. PDE 7(3), 529–550 (2014)

    Article  MathSciNet  Google Scholar 

  18. Kac, M.: Can one hear the shape of a drum? Am. Math. Month. 73(4P2), 1–23 (1966)

    Article  MathSciNet  Google Scholar 

  19. Liu, S.: An optional dimension-free upper bound for eigenvalue ratios (Preprint). arXiv: 1405.2213v3

  20. Lohkamp, J.: Discontinuity of geometric expansions. Commentarii Mathematici Helvetici 71(1), 213–228 (1996)

    Article  MathSciNet  Google Scholar 

  21. Payne, L., Pólya, G., Weinberger, H.: On the ratio of consecutive eigenvalues. J. Math. Phys. 35, 289–298 (1956)

    Article  MathSciNet  Google Scholar 

  22. Randol, B.: Cylinders in Riemann surfaces. Commentarii Mathematici Helvetici 54, 1–5 (1979)

    Article  MathSciNet  Google Scholar 

  23. Reed, M., Simon, B.: Methods of Modern Mathematical Physics: Functional Analysis, Rev Academic Press, London (1980)

    Google Scholar 

  24. Yang, H.: An estimate of the difference between consecutive eigenvalues. Revision of I.C.T.P (preprint) IC/91/60, Trieste, Italy (1991)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuoqin Wang.

Additional information

Communicated by F.-H. Lin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by National Key R and D Program of China 2020YFA0713100, and by NSFC No. 12171446, 11721101.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Wang, Z. Riemannian metrics with prescribed volume and finite parts of Dirichlet spectrum. Calc. Var. 63, 78 (2024). https://doi.org/10.1007/s00526-024-02684-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-024-02684-x

Mathematics Subject Classification

Navigation