Skip to main content
Log in

On a multi-objective control problem for the Korteweg–de Vries equation

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

This paper deals with a hierarchical control problem for the Korteweg–de Vries (KdV) equation with distributed controls following a Stackelberg–Nash strategy. We have a control problem with many objectives to be achieved and, to do that, more than one control is needed. We assume that there is a primary control, called the leader, and two secondary ones, called the followers, each of them responsible for a given objective. Once the leader has fixed its goals, the followers must act to accomplish their ones. In the present paper, the leader wants to drive the solutions of a KdV equation to a given trajectory, while the followers must be in equilibrium according to their targets. We stress that results of this kind are already known for many parabolic and hyperbolic equations, but no results are known for any dispersive equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

I state that data sharing is not applicable to this article since no datasets were generated or analyzed during the current study.

References

  1. Alekseev, V.M., Tikhomirov, V.M., Fomin, S.V.: Optimal Control. Translated from the Russian by VM Volosov. Contemporary Soviet Mathematics Consultants Bureau, New York (1987)

  2. Araruna, F.D., Araújo, B.S.V., Fernández-Cara, E.: Stackelberg–Nash null controllability for some linear and semilinear degenerate parabolic equations. Math. Control Signals Syst. 30(3), 1–31 (2018). https://doi.org/10.1007/s00498-018-0220-6

    Article  MathSciNet  MATH  Google Scholar 

  3. Araruna, F.D., Cerpa, E., Mercado, A., Santos, M.C.: Internal null controllability of a linear Schrödinger–KdV system on a bounded interval. ScienceDirect J. Differ. Equ. 260, 653–687 (2016). https://doi.org/10.1016/j.jde.2015.09.009

    Article  MATH  Google Scholar 

  4. Araruna, F.D., Fernández-Cara, E., da Silva, L.C.: Hierarchic control for exact controllability of parabolic equations with distributed and boundary controls. Commun. Contemp. Math. 22(7), 1–41 (2020). https://doi.org/10.1142/S0219199719500342

    Article  MATH  Google Scholar 

  5. Araruna, F.D., Fernández-Cara, E., da Silva, L.C.: Hierarchic control for the wave equation. J. Optim. Theory Appl. 178(1), 264–288 (2018). https://doi.org/10.1007/s10957-018-1277-6

    Article  MathSciNet  MATH  Google Scholar 

  6. Araruna, F.D., Fernández-Cara, E., Santos, C.: Stackelberg–Nash exact controllability for linear and semilinear parabolic equations. ESAIM Control Optim. Calc. Var. 21(3), 835–856 (2015). https://doi.org/10.1051/cocv/2014052

    Article  MathSciNet  MATH  Google Scholar 

  7. Araruna, F.D., Fernández-Cara, E., Guerrero, S., Santos, M.C.: New results on the Stackelberg–Nash exact control of linear parabolic equations. Syst. Control Lett. 104, 78–85 (2017). https://doi.org/10.1016/j.sysconle.2017.03.009

    Article  MathSciNet  MATH  Google Scholar 

  8. Araruna, F.D., de Menezes, S.D.B., Rojas-Medar, M.A.: On the approximate controllability of Stackelberg-Nash strategies for linearized micropolar fluids. Appl. Math. Optim. 70(3), 373–393 (2014). https://doi.org/10.1007/s00245-014-9240-x

    Article  MathSciNet  MATH  Google Scholar 

  9. Bergh, J.J., Löfström, J.: Interpolation Spaces: An Introduction. Springer-Verlag, Berlin, New York (1976)

    Book  MATH  Google Scholar 

  10. Bona, J., Winther, R.: The Korteweg–de Vries equation, posed in a quarter-plane. SIAM J. Math. Anal. 14, 1056–1106 (1983). https://doi.org/10.1137/0514085

    Article  MathSciNet  MATH  Google Scholar 

  11. Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to non-linear evolution equations, part II: the KdV equation. Geom. & Funct. Anal. 3, 209–262 (1993). https://doi.org/10.1007/BF01895688

    Article  MathSciNet  MATH  Google Scholar 

  12. Capistrano-Filho, R.A., Pazoto, A.F., Rosier, L.: Internal controllability of the Korteweg–de Vries equation on a bounded domain. Math. Control Signals Syst. 21(4), 1076–1107 (2017). https://doi.org/10.1051/cocv/2014059

    Article  MathSciNet  MATH  Google Scholar 

  13. Carreño, N., Cerpa, E., Crépeau, E.: Internal null controllability of the generalized Hirota–Satsuma system. ESAIM Control Optim. Calc. Var. 26, 75 (2020). https://doi.org/10.1051/cocv/2019062

    Article  MathSciNet  MATH  Google Scholar 

  14. Carreño, N., Santos, M.C.: Stackelberg–Nash exact controllability for the Kuramoto–Sivashinsky equation. J. Differ. Equ. 266(9), 6068–6108 (2019). https://doi.org/10.1016/j.jde.2018.10.043

    Article  MathSciNet  MATH  Google Scholar 

  15. Cerpa, E.: Control of a Korteweg–de Vries equation: a tutorial. Math. Control Relat. Fields 4(1), 45–99 (2014). https://doi.org/10.3934/mcrf.2014.4.45

    Article  MathSciNet  MATH  Google Scholar 

  16. Cerpa, E.: Exact controllability of a nonlinear Korteweg–de Vries equation on a critical spatial domain. SIAM J. Control Optim. 46, 877–899 (2007). https://doi.org/10.1137/06065369X

    Article  MathSciNet  MATH  Google Scholar 

  17. Cerpa, E., Coron, J.-M.: Rapid stabilization for a Korteweg–de Vries equation from the left Dirichlet boundary condition. IEEE Trans. Autom. Control 58, 1688–1695 (2013). https://doi.org/10.1109/TAC.2013.2241479

    Article  MathSciNet  MATH  Google Scholar 

  18. Cerpa, E., Crépeau, E.: Boundary controllability for the nonlinear Korteweg-de Vries equation on any critical domain. Ann. I.H. Poincaré 26, 457–475 (2009). https://doi.org/10.1016/j.anihpc.2007.11.003

    Article  MathSciNet  MATH  Google Scholar 

  19. Chapouly, M.: Global controllability of a nonlinear Korteweg–de Vries equation. Commun. Contemp. Math. 11(03), 495–521 (2009). https://doi.org/10.1142/S0219199709003454

    Article  MathSciNet  MATH  Google Scholar 

  20. Coron, J.-M.: Control and Nonlinearity, vol. 136. American Mathematical Society, Providence (2007)

    MATH  Google Scholar 

  21. Coron, J.-M., Crépeau, E.: Exact boundary controllability of a nonlinear KdV equation with a critical length. J. Eur. Math. Soc. 6, 367–398 (2004). https://doi.org/10.4171/JEMS/13

    Article  MathSciNet  MATH  Google Scholar 

  22. Díaz, J.I.: On the von Neumann problem and the approximate controllability of Stackelberg–Nash strategies for some environmental problems. Rev. R. Acad. Cien. Ser. A Math. 96(3), 343–356 (2002)

    MathSciNet  MATH  Google Scholar 

  23. Díaz, J.I., Lions, J.-L.: On the Approximate Controllability of Stackelberg–Nash Strategies. Ocean Circulation and Pollution Control: A Mathematical and Numerical Investigation, pp. 17–27. Springer, Berlin (2004) https://doi.org/10.1007/978-3-642-18780-3_2

  24. Glass, O., Guerrero, S.: Controllability of the Korteweg–de Vries equation from the right Dirichlet boundary condition. Syst. Control Lett. 59(7), 390–395 (2010). https://doi.org/10.1016/j.sysconle.2010.05.001

    Article  MathSciNet  MATH  Google Scholar 

  25. Glass, O., Guerrero, S.: Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit. Asymptot. Anal. 60, 61–100 (2008). https://doi.org/10.1002/pamm.200701006

    Article  MathSciNet  MATH  Google Scholar 

  26. Guillén-González, F., Marques-Lopes, F.P., Rojas-Medar, M.A.: On the approximate controllability of Stackelberg–Nash strategies for Stokes equations. Proc. Am. Math. Soc. 141(5), 1759–1773 (2013). https://doi.org/10.1090/S0002-9939-2012-11459-5

    Article  MathSciNet  MATH  Google Scholar 

  27. Hernández-Santamaría, V., de Teresa, L., Poznyak, A.: Hierarchic control for a coupled parabolic system. Port. Math. 73(2), 115–137 (2016). https://doi.org/10.4171/PM/1979

    Article  MathSciNet  MATH  Google Scholar 

  28. Kappeler, T., Topalov, P.: Well-posedness of KDV on \(H^1({\mathbb{T} })\). Duke Math. J. 135(2), 327–360 (2006). https://doi.org/10.1215/S0012-7094-06-13524-X

    Article  MathSciNet  MATH  Google Scholar 

  29. Kato, T.: On the Cauchy problem for the (generalized) Korteweg–de Vries equations. Stud. Appl. Math. Adv. Math. Suppl. Stud. 8, 93–128 (1983)

    MathSciNet  Google Scholar 

  30. Kenig, C., Ponce, G., Vega, L.: A bilinear estimate with applications to the KdV equation. J. Am. Math. Soc. 9, 573–603 (1996). https://doi.org/10.1090/S0894-0347-96-00200-7

    Article  MathSciNet  MATH  Google Scholar 

  31. Komornik, V., Russell, D.L., Zhang, B.Y.: Stabilization de l’équation de Korteweg–de Vries. ZC. R. Acad. Sci. Paris Sér. I Math. 312, 841–843 (1991)

    MATH  Google Scholar 

  32. Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 39, 422–443 (1895)

    Article  MathSciNet  MATH  Google Scholar 

  33. Linares, F., Pazoto, A.F.: On the exponential decay of the critical generalized Korteweg–de Vries with localized damping. Proc. Am. Math. Soc. 135, 1515–1522 (2007). https://doi.org/10.1090/S0002-9939-07-08810-7

    Article  MathSciNet  MATH  Google Scholar 

  34. Linares, F., Ponce, G.: Introduction to Nonlinear Dispersive Equations. Universitext, Springer, New York (2009)

    MATH  Google Scholar 

  35. Lions, J.-L.: Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1, Recherches en Mathématiques Appliquées, 8, Masson, Paris (1988)

  36. Lions, J.-L.: Contrôle de Pareto de systèmes distribués. Le cas d’évolution. C.R. Acad. Sc. Paris Sér. I 302(11), 413–417 (1986)

    MathSciNet  MATH  Google Scholar 

  37. Lions, J.-L.: Some remarks on Stackelberg’s optimization. Math. Models Methods Appl. Sci. 4, 477–487 (1994). https://doi.org/10.1142/S0218202594000273

    Article  MathSciNet  MATH  Google Scholar 

  38. Lunardi, A.: Interpolation Theory, vol. 16. Springer, New York (2018)

    Book  MATH  Google Scholar 

  39. Micu, S., Zuazua, E.: An introduction to the controllability of partial differential equations, Contrôle non linéaire et applications. In: Sari, T. (ed.) Collection Travaux en Cours, pp. 67–150. Hermann, Paris (2005)

    Google Scholar 

  40. Nash, J.F.: Noncooperative games. Ann. Math. 54, 286–295 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  41. Pazoto, A.F.: Unique continuation and decay for the Korteweg–de Vries equation with localized damping. ESAIM Control Optim. Calc. Var. 11, 473–486 (2005). https://doi.org/10.1051/cocv:2005015

    Article  MathSciNet  MATH  Google Scholar 

  42. Perla Menzala, G., Vasconcellos, C.F., Zuazua, E.: Stabilization of the Korteweg–de Vries equation with localized damping. Q. Appl. Math. 60, 111–129 (2002). https://doi.org/10.1090/qam/1878262

    Article  MathSciNet  MATH  Google Scholar 

  43. Ramos, A.M., Glowinski, R., Periaux, J.: Nash equilibria for the multiobjective control of linear partial differential equations. J. Optim. Theory Appl. 112, 457–498 (2002). https://doi.org/10.1023/A:1017981514093

    Article  MathSciNet  MATH  Google Scholar 

  44. Ramos, A.M., Glowinski, R., Periaux, J.: Pointwise control of the Burgers equation and related Nash equilibria problems: a computational approach. J. Optim. Theory Appl. 112, 499–516 (2001). https://doi.org/10.1023/A:1017907930931

    Article  MATH  Google Scholar 

  45. Rosier, L.: Exact boundary controllability for the Korteweg–de Vries equation on a bounded domain. ESAIM Control Optim. Calc. Var. 2, 33–55 (1997). https://doi.org/10.1051/cocv:1997102

    Article  MathSciNet  MATH  Google Scholar 

  46. Rosier, L., Zhang, B.-Y.: Control and stabilization of the Korteweg–de Vries equation: recent progresses. J. Syst. Sci. Complex. 22, 647–682 (2009). https://doi.org/10.1007/s11424-009-9194-2

    Article  MathSciNet  MATH  Google Scholar 

  47. Russell, D.L.: Computational study of the Korteweg–de Vries equation with localized control action. Distributed Parameter Control Systems: New Trends and Applications, Lecture Notes in Pure and Appl. Math. Marcel Dekker, New York 128, 195–203 (1991)

  48. Russell, D.L., Zhang, B.-Y.: Controllability and stabilizability of the third-order linear dispersion equation on a periodic domain. SIAM J. Control Optim. 31, 659–676 (1993). https://doi.org/10.1137/0331030

    Article  MathSciNet  MATH  Google Scholar 

  49. Russell, D.L., Zhang, B.-Y.: Smoothing and decay properties of the Korteweg–de Vries equation on a periodic domain with point dissipation. J. Math. Anal. Appl. 190, 449–488 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  50. Saut, J.C., Temam, R.: Remarks on the Korteweg–de Vries equation. Israel J. Math. 24, 78–87 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  51. Tao, T.: Nonlinear Dispersive Equations: Local and Global Analysis, vol. 106. American Mathematical Society, Providence (2006)

    MATH  Google Scholar 

  52. Tucsnak, M., Weiss, G.: Observation and Control for Operator Semigroups. Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Verlag, Basel (2009)

    Book  Google Scholar 

  53. Von Stalckelberg, H.: Marktform und Gleichgewicht. Springer, Berlin, Germany (1934)

    Google Scholar 

  54. Zeidler, E.: Applied Functional Analysis: Main Principles and Their Applications, vol. 109. Springer Science & Business Media, New York (2012)

    MATH  Google Scholar 

  55. Zhang, B.-Y.: Exact boundary controllability of the Korteweg–de Vries equation. SIAM J. Control Optim. 37(2), 543–565 (1999). https://doi.org/10.1137/S0363012997327501

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research was partially supported by Grant 2019/0014 Paraíba State Research Foundation (FAPESQ), CNPq, CAPES, MathAmSud ACIPDE and SCIPinPDEs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurício C. Santos.

Additional information

Communicated by Enno Lenzmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albuquerque, I.C.A., Araruna, F.D. & Santos, M.C. On a multi-objective control problem for the Korteweg–de Vries equation. Calc. Var. 62, 131 (2023). https://doi.org/10.1007/s00526-023-02471-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-023-02471-0

Keywords

Mathematics Subject Classification

Navigation