Skip to main content
Log in

Boundary plasmas for a confined plasma problem in dimensional two

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider a free boundary problem arising in the study of the equilibrium of a confined Tokamak plasma in dimensional two. By choosing a suitable flux constant on each connected component of the boundary of the domain, we construct solutions with many sharp peaks near the boundary and prove that the number of solutions of this problem goes to infinity as parameter tends to infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Berestycki, H., Brezis, H.: Sur certains problemes de frontiere libre. C. R. Acad. Sci. Paris 283, 1091–1094 (1976)

    MathSciNet  MATH  Google Scholar 

  2. Caffarelli, L., Friedman, A.: Asymptotic estimates for the plasma problem. Duke Math. J. 47, 705–742 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cao, D., Guo, Y., Peng, S., Yan, S.: Local uniqueness for vortex patch problem in incompressible planar steady flow. J. Math. Pures Appl. 9(131), 251–289 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Cao, D., Peng, S., Yan, S.: Multiplicity of solutions for the plasma problem in two dimensions. Adv. Math. 225, 2741–2785 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gui, C.: Multi-peak solutions for a semilinear Neumann problem. Duke Math. J. 84, 739–769 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gui, C., Wei, J., Winter, M.: Multiple boundary peak solutions for some singularly perturbed Neumann problems. Ann. Inst. Henri Poincaré, Analyse non linéare 17 1, 47–82 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kinderlehrer, D., Nirenberg, L., Spruk, J.: Regularity in elliptic free boundary problem. J. D’Analyse Math. 34, 86–119 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kinderlehrer, D., Spruk, J.: The shape and smoothness of stable plasma configurations. Ann. Sc. Norm. Super. Pisa Ser. IV 5, 113–148 (1978)

    MathSciNet  Google Scholar 

  9. Li, Y.Y.: On a singularly perturbed equation with Neumann boundary condition. Commun. PDE 23, 487–545 (1996)

    MathSciNet  MATH  Google Scholar 

  10. Lin, C., Ni, W.-M., Takagi, I.: Large amplitude stationary solutions to chemotaxis systems. J. Differ. Equ. 72, 1–27 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, G., Yan, S., Yang, J.: The superlinear Lazer-McKenna conjecture for an elliptic problem with critical growth, part II. J. Differ. Equ. 227, 310–331 (2006)

    Article  Google Scholar 

  12. Mercier, C.: The magnetohydrodynamic approach to the problem of plasma confinment in closed magnetic configurations. Publication of EURATOM C.E.A, Luxembourg (1974)

    Google Scholar 

  13. Ni, W.-M., Takagi, I.: On the shape of least energy solutions to a semilinear Neumann problem. Commun. Pure Appl. Math. 41, 819–851 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ni, W.-M., Takagi, I.: Locating the peaks of least energy solutions to a semilinear Neumann problem. Duke Math. J. 70, 247–281 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Puel, J.P.: Sur un probléme de valuer propre non linéare et de frontiér libre. C. R. Acad. Sci. Paris 284, 861–863 (1977)

    MathSciNet  MATH  Google Scholar 

  16. Schaeffer, D.: Non-uniqueness in the equilibrium shape of a confined plasma. Commun. PDE 2, 587–600 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  17. Smets, D., Van Schaftingen, J.: Desingulariation of vortices for the Euler equation. Arch. Ration. Mech. Anal. 198, 869–925 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Temam, R.: A nonlinear eigenvalue problem: The shape at equilibrium of a confined plasmas. Arch. Ration. Mech. Anal. 60, 51–73 (1975)

    Article  MATH  Google Scholar 

  19. Temam, R.: Remarks on a free boundary value problem arising in plasma physics. Commun. PDE 2, 563–585 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wei, J., Yan, S.: Arbitrary many boundary peak solutions for an elliptic Neumann problem with critical growth. J. Math. Pures Appl. 88, 350–378 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wei, J., Yan, S.: Lazer-McKenna conjecture: The critical case. J. Funct. Anal. 244, 639–667 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yan, S., Yu, W.: Planar vortices in a bounded domain with a hole. Electron. Res. Arch. 6(29), 4229–4241 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yang, J.: Remarks on the equilibrium shape of a Tokamak plasma. Proc. Roy. Soc. Edin. 123A, 1059–1070 (1993)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Z. Huang was supported by Guangzhou Science and technology planning project (No:202201011566) and Guangdong Basic and Applied Basic Research Fund-Regional Joint Fund-Youth Fund Project (No: 2022A1515110997). J. Yang was supported by the National Natural Science Foundation of China (No:12171212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weilin Yu.

Additional information

Communicated by A. Mondino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Boundary estimates for the Green function and the Robin function

In this appendix, we give boundary estimates for the Robin function \(\varphi \) and the Green function G(yx) used in the preceding sections.

For \(x\in \Omega \) close to \(\Gamma \), let \(d(x)=\textrm{dist}(x,\Gamma )\) and denote \(\hat{x}\in \Gamma \) to be the unique point such that \(|x-\hat{x}|=d(x)\) for \(d(x)>0\) small.

Lemma A.1

The Robin function \(\varphi \) satisfies as \(d(x)\rightarrow 0\) that

$$\begin{aligned} \varphi (x)=\frac{1}{2\pi }\ln \frac{1}{2d(x)}+O(d(x)) \end{aligned}$$
(A.1)

and

$$\begin{aligned} \frac{\partial \varphi (x)}{\partial \tau }=O(1),\quad \frac{\partial \varphi (x)}{\partial \nu }=\frac{1}{2\pi d(x)}+O(1), \end{aligned}$$
(A.2)

where \(\tau \) and \(\nu \) be the unit tangent and the unit normal of \(\partial \Omega \) at \(\hat{x}\), respectively.

Proof

By translation and rotation, we may assume that \(x=(0,d)\), \(\hat{x}=0\) and there exists a \(C^2\) function \(\eta (y_1)\) such that \(\eta (0)=0\), \(\eta ^\prime (0)=0\),

$$\begin{aligned} \partial \Omega \cap B_{\delta }(0)=\big \{y\in \mathbb {R}^2:\, y_2=\eta (y_1)\big \}\cap B_{\delta }(0) \end{aligned}$$

and

$$\begin{aligned} \Omega \cap B_{\delta }(0)=\big \{y\in \mathbb {R}^2:\, y_2>\eta (y_1)\big \}\cap B_{\delta }(0), \end{aligned}$$

where \(\delta >0\) is a small constant.

Let \(\bar{x}=(0,-d)\) be the refection of x with respect to \(y_1\) axis and set

$$\begin{aligned} H_0(y,x)=\frac{1}{2\pi }\ln \frac{1}{|y-\bar{x}|}. \end{aligned}$$

Then, \(f(y):=H(y,x)-H_0(y,x)\) is harmonic in \(\Omega \). For \(y\in \partial \Omega \cap B_\delta (0) \), since \(|y_2|=|\eta (y_1)|=O(y_1^2)\), we have

$$\begin{aligned} \begin{aligned} f(y)=&\frac{1}{2\pi }\ln \frac{1}{|y-x|}-\frac{1}{2\pi }\ln \frac{1}{|y-\bar{x}|}=\frac{1}{4\pi }\ln \left( 1+\frac{4y_2d}{|y-x|^2}\right) =O\left( \frac{y_2d}{|y-x|^2}\right) \\ =&O\left( \frac{y_2d}{|y|^2+d^2}\frac{1}{1-\frac{2y_2d}{|y|^2+d^2}}\right) =O\left( \frac{y_2d}{|y|^2+d^2}\right) =O(d). \end{aligned} \end{aligned}$$

On the other hand, if \(y\in \partial \Omega \setminus B_\delta (0)\), there holds

$$\begin{aligned} f(y)=\frac{1}{4\pi }\ln \left( 1+\frac{4y_2d}{|y-x|^2}\right) =O\left( \frac{y_2d}{|y-x|^2}\right) =O(d). \end{aligned}$$

By the maximum principle,

$$\begin{aligned} |f(y)|\le \max _{z\in \partial \Omega } |f(z)|,\quad y\in \Omega , \end{aligned}$$

which implies

$$\begin{aligned} H(y,x)=H_0(y,x)+O(d). \end{aligned}$$
(A.3)

Thus, (A.1) follows.

We now prove (A.2). For \(l=1,2\), let

$$\begin{aligned} f_l(y):=\frac{\partial H}{\partial x_l}(y,x)-\frac{\partial H_0}{\partial x_l}(y,x). \end{aligned}$$

Hence, \(\Delta f_l=0\) in \(\Omega \). Using Taylor expansion of \(\eta \) at 0, we get for \(y\in \partial \Omega \cap B_\delta (0)\) that

$$\begin{aligned} \begin{aligned} f_1(y)=&\frac{1}{2\pi }\frac{y_1}{|y-x|^2}-\frac{1}{2\pi }\frac{y_1}{|y-\bar{x}|^2} =\frac{1}{2\pi }\frac{y_1}{|y|^2+d^2}\left( \frac{1}{1-\frac{2y_2d}{|y|^2+d^2}}-\frac{1}{1+\frac{2y_2d}{|y|^2+d^2}}\right) \\ =&\frac{2y_1y_2d}{\pi (|y|^2+d^2)^2}+O(d) =\frac{2\eta ^{\prime \prime }(0)y_1^3d}{\pi (y_1^2+d^2)^2}+O(d)=O(1). \end{aligned} \end{aligned}$$

If \(y\in \partial \Omega \setminus B_\delta (0)\), we can verify that

$$\begin{aligned} \begin{aligned} f_1(y)=&\frac{1}{2\pi }\frac{y_1}{|y-x|^2}-\frac{1}{2\pi }\frac{y_1}{|y-\bar{x}|^2}=O(1). \end{aligned} \end{aligned}$$

The maximum principle yields

$$\begin{aligned} \frac{\partial H}{\partial x_1}(y,x)=\frac{\partial H_0}{\partial x_1}(y,x)+O(1). \end{aligned}$$
(A.4)

Similarly,

$$\begin{aligned} \frac{\partial H}{\partial x_2}(y,x)=\frac{\partial H_0}{\partial x_2}(y,x)+O(1). \end{aligned}$$
(A.5)

Therefore, the estimates (A.2) follows from (A.4), (A.5) and the equation

$$\begin{aligned} \frac{\partial \varphi (x)}{\partial x_l}=2\frac{\partial H}{\partial x_l}(y,x)\big |_{y=x},\quad l=1,2. \end{aligned}$$

\(\square \)

Now, we estimate the Green function G(yx) near the boundary of \(\Omega \).

For any \(d_i,d_j \in \left[ \Big (\bar{b}-\frac{L}{|\ln \varepsilon |^{\theta _0}}\Big )\frac{1}{\lambda _\varepsilon |\ln \varepsilon |},\; \Big (\bar{b}+\frac{L}{|\ln \varepsilon |^{\theta _0}}\Big )\frac{1}{\lambda _\varepsilon |\ln \varepsilon |}\right] \) and \(\hat{x}_i,\hat{x}_j\in \Gamma \), let

$$\begin{aligned} x_i=\hat{x}_i-d_i\nu (\hat{x}_i),\quad x_j=\hat{x}_j-d_j\nu (\hat{x}_j). \end{aligned}$$

Lemma A.2

Suppose that \(|\hat{x}_i-\hat{x}_j|\ge d_j\), we have

$$\begin{aligned} G(x_i,x_j)=\frac{d_j^2}{\pi |\hat{x}_i-\hat{x}_j|^2}+O\left( \frac{d_j^4}{|\hat{x}_i-\hat{x}_j|^4}+\frac{1}{|\ln \varepsilon |^{\theta _0}}\right) \end{aligned}$$
(A.6)

and

$$\begin{aligned} \frac{\partial G(x_i,x_j)}{\partial x_{i,l}}=O\left( \frac{d_j}{|\hat{x}_i-\hat{x}_j|^2}\right) ,\quad l=1,2. \end{aligned}$$
(A.7)

Proof

By (A.3), for \(y\in \Omega \),

$$\begin{aligned} H(y,x_j)=\frac{1}{2\pi }\ln \frac{1}{|y-\bar{x}_j|}+O(d_j), \end{aligned}$$

where \(\bar{x}_j=\hat{x}_j+d_j\nu (\hat{x}_j)\). So we have

$$\begin{aligned} \begin{aligned} G(x_i,x_j)=\frac{1}{2\pi }\ln \frac{1}{|x_i-x_j|}-\frac{1}{2\pi }\ln \frac{1}{|x_i-\bar{x}_j|}+O(d_j). \end{aligned} \end{aligned}$$

Apparently,

$$\begin{aligned} |x_i-\bar{x}_j|^2=|x_i-x_j|^2+|x_j-\bar{x}_j|^2+2\langle x_i-x_j,x_j-\bar{x}_j \rangle \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} \langle x_i-x_j,x_j-\bar{x}_j \rangle =&-2d_j\langle x_i-x_j,\nu (\hat{x}_j)\rangle \\ =&-2d_j\langle \hat{x}_i-\hat{x}_j,\nu (\hat{x}_j)\rangle +2d_j \langle d_i\nu (\hat{x}_i)-d_j\textbf{n}(\hat{x}_j),\nu (\hat{x}_j)\rangle \\ =&-2d_j\langle \hat{x}_i-\hat{x}_j,\nu (\hat{x}_j)\rangle +2d_j d_i\langle \nu (\hat{x}_i)-\nu (\hat{x}_j),\nu (\hat{x}_j)\rangle +2d_j(d_i-d_j) \\ =&O\left( d_j| \hat{x}_i-\hat{x}_j|^2+d_id_j| \hat{x}_i-\hat{x}_j|+d_j|d_i-d_j|\right) . \end{aligned} \end{aligned}$$

On the other hand,

$$\begin{aligned} |x_i-x_j|=|\hat{x}_i-\hat{x}_j|+O(|d_i\nu (\hat{x}_i)-d_j\nu (\hat{x}_j)|)=|\hat{x}_i-\hat{x}_j|+O(|d_i-d_j|+d_j|\hat{x}_i-\hat{x}_j|). \end{aligned}$$

Therefore,

$$\begin{aligned} \begin{aligned} G(x_i,x_j)=&\frac{1}{4\pi }\ln \left( 1+\frac{|x_i-\bar{x}_j|^2-|x_i-x_j|^2 }{|x_i-x_j|^2}\right) +O(d_j) \\ =&\frac{1}{4\pi }\ln \left( 1+\frac{4d_j^2+ O\big (d_j| \hat{x}_i-\hat{x}_j|^2+d_id_j| \hat{x}_i-\hat{x}_j|+d_j|d_i-d_j|\big )}{|x_i-x_j|^2}\right) +O(d_j) \\ =&\frac{1}{\pi }\frac{d_j^2}{|\hat{x}_i-\hat{x}_j|^2}+O\left( d_j +\frac{d_jd_j}{| \hat{x}_i-\hat{x}_j|}+ \frac{d_j|d_i-d_j|}{| \hat{x}_i-\hat{x}_j|^2}+\frac{d_j^4}{| \hat{x}_i-\hat{x}_j|^4}\right) \\ =&\frac{1}{\pi }\frac{d_j^2}{|\hat{x}_i-\hat{x}_j|^2}+O\left( \frac{d_j^4}{| \hat{x}_i-\hat{x}_j|^4}+\frac{1}{|\ln \varepsilon |^{\theta _0}}\right) . \end{aligned} \end{aligned}$$

By (A.4) and (A.5), for \(y\in \Omega \),

$$\begin{aligned} \frac{\partial H(y,x_j)}{\partial y_l}=\frac{\partial }{\partial y_l}\left( \frac{1}{2\pi }\ln \frac{1}{|y-\bar{x}_j|}\right) +O(1), \end{aligned}$$

and then

$$\begin{aligned} \begin{aligned} \frac{\partial G(x_i,x_j)}{\partial x_{i,l}}&=\frac{\partial }{\partial x_{i,l}}\left( \frac{1}{2\pi }\ln \frac{1}{|x_i-x_j|}-\frac{1}{2\pi }\ln \frac{1}{|x_i-\bar{x}_j|}\right) +O(1) \\&=-\frac{1}{2\pi }\left( \frac{x_{i,l}-x_{j,l}}{|x_i-x_j|^2}-\frac{x_{i,l}-\bar{x}_{j,l}}{|x_i-\bar{x}_j|^2}\right) +O(1) \\&=-\frac{x_{i,l}-x_{j,l}}{2\pi }\cdot \frac{|x_i-\bar{x}_j|^2-|x_i-x_j|^2}{|x_i-x_j|^2|x_i-\bar{x}_j|^2}+O\left( \frac{d_j}{|\hat{x}_i-\hat{x}_j|^2}\right) \\&=O\left( \frac{d_j}{|\hat{x}_i-\hat{x}_j|^2}\right) . \end{aligned} \end{aligned}$$

The proof is complete. \(\square \)

We conclude from Lemma A.2 that

Lemma A.3

For any \(\textbf{x}\in \Omega _k\), there holds

$$\begin{aligned} G(x_i,x_j)\le \frac{C_1}{|\ln \varepsilon |^{\theta _0}}. \end{aligned}$$

Moreover, if \(|\hat{x}_i-\hat{x}_j|=\frac{1}{\lambda _\varepsilon |\ln \varepsilon |^{1-\theta _0/2}}\), then

$$\begin{aligned} G(x_i,x_j)\ge \frac{C_2}{|\ln \varepsilon |^{\theta _0}}, \end{aligned}$$

where \(C_1, C_2\) are two positive constants.

Appendix B. The estimates for the plasma set

In this appendix, we give estimates for the radius of plasma set. The similar results can be found in Lemma A.1 in [4]. For the sake of completeness, we give the proof.

Lemma B.1

Suppose that \(\omega \) is a function satisfying

$$\begin{aligned} \Vert \omega \Vert _{L^\infty (\Omega )}=O\left( \varepsilon \right) . \end{aligned}$$

Then for each constant \( 0<\sigma <1/k \), there is a constant \(\varepsilon _{\sigma ,k}>0\) such that for any \(0<\varepsilon < \varepsilon _{\sigma ,k}\),

$$\begin{aligned} \sum \limits _{j=1}^kPU_{\varepsilon ,x_j,a_{\varepsilon ,j}}(y)+\omega (y)-\kappa +\lambda _\varepsilon \eta (y)>0,\quad \, y\in B_{s\varepsilon (1-\varepsilon ^{\sigma })}(x_i),\;\; i=1,\cdots ,k, \end{aligned}$$

while

$$\begin{aligned} \sum \limits _{j=1}^kPU_{\varepsilon ,x_j,a_{\varepsilon ,j}}(y)+\omega (y)-\kappa +\lambda _\varepsilon \eta (y)<0,\quad \, y\in \Omega \setminus \cup _{i=1}^k B_{s\varepsilon (1+\varepsilon ^{\sigma })}(x_i). \end{aligned}$$

Proof

If \(y\in B_{s\varepsilon (1-\varepsilon ^{\sigma })}(x_i)\), by (2.13), \(\varphi _1(s)=0\) and \(\varphi ^\prime _1(t)<0\) for \(0< t \le s \), we have

$$\begin{aligned} \begin{aligned}&\sum \limits _{j=1}^kPU_{\varepsilon ,x_j,a_{\varepsilon ,j}}(y)+\omega (y)-\kappa +\lambda _\varepsilon \eta (y) =U_{\varepsilon ,x_i,a_{\varepsilon ,i}}(y)-a_{\varepsilon ,i}+O(\varepsilon ) \\&=\frac{a_{\varepsilon ,i}}{s\varphi _1^\prime (s)\ln \frac{s\varepsilon }{R}}\varphi _1\left( \frac{|y-x_i|}{\varepsilon }\right) +O(\varepsilon ) \\&>\frac{a_{\varepsilon ,i}}{s\varphi _1^\prime (s)\ln \frac{s\varepsilon }{R}}\varphi _1\left( s(1-\varepsilon ^{\sigma })\right) +O(\varepsilon ) \\&=-\frac{a_{\varepsilon ,i}}{\ln \frac{s\varepsilon }{R}}\varepsilon ^{\sigma }+O\left( \varepsilon +\frac{\varepsilon ^{2\sigma }}{|\ln \varepsilon |}\right) >0. \end{aligned} \end{aligned}$$

For the case that \(y\in \Omega {\setminus } \cup _{i=1}^k B_{\varepsilon ^{\sigma _1}}(x_i)\), where \(\sigma<\sigma _1<1/k\) is a fixed constant, using the fact that

$$\begin{aligned} G(y,x_j)=\frac{1}{2\pi }\ln \frac{1}{|y-x_j|}-\frac{1}{2\pi }\ln \frac{1}{|y-\bar{x}_j|}+O(d_j), \end{aligned}$$

where \(\bar{x}_j\) is the reflection point of \(x_j\) with respect the boundary \(\Gamma \) of \(\Omega \), we find

$$\begin{aligned} \begin{aligned}&\sum \limits _{j=1}^kPU_{\varepsilon ,x_j,a_{\varepsilon ,j}}(y)+\omega (y)-\kappa +\lambda _\varepsilon \eta (y) =2\pi \sum \limits _{j=1}^k\frac{a_{\varepsilon ,j}}{\ln \frac{R}{s\varepsilon }}G(y,x_j)-\kappa +O(\lambda _\varepsilon ) \\&=\sum \limits _{j=1}^k\frac{a_{\varepsilon ,j}}{\ln \frac{R}{s\varepsilon }}\ln \frac{|y-\bar{x}_j|}{|y-x_j|}-\kappa +O(\lambda _\varepsilon ) \\&<\sum \limits _{j=1}^k\frac{a_{\varepsilon ,j}}{\ln \frac{R}{s\varepsilon }}\ln \left( 1+\frac{2d_j}{\varepsilon ^{\sigma _1}}\right) -\kappa +O(\lambda _\varepsilon ) \\&=\kappa (k\sigma _1-1)+O(\lambda _\varepsilon )<0. \end{aligned} \end{aligned}$$

Finally, if \(y\in B_{\varepsilon ^{\sigma _1}}(x_i){\setminus } B_{s\varepsilon (1+\varepsilon ^{\sigma _1}|\ln \varepsilon |)}(x_i)\) for some i, then

$$\begin{aligned} \begin{aligned}&\sum \limits _{j=1}^kPU_{\varepsilon ,x_j,a_{\varepsilon ,j}}(y)+\omega (y)-\kappa +\lambda _\varepsilon \eta (y) =U_{\varepsilon ,x_i,a_{\varepsilon ,i}}(y)-a_{\varepsilon ,i}+O(\lambda _\varepsilon \varepsilon ^{\sigma _1}) \\&=a_{\varepsilon ,i}\frac{\ln \frac{|y-x_i|}{s\varepsilon }}{\ln \frac{s\varepsilon }{R}}+O(\lambda _\varepsilon \varepsilon ^{\sigma _1}) \\&<a_{\varepsilon ,i}\frac{\ln (1+\varepsilon ^{\sigma _1}|\ln \varepsilon |)}{\ln \frac{s\varepsilon }{R}}+O(\lambda _\varepsilon \varepsilon ^{\sigma _1}) \\&=\frac{a_{\varepsilon ,i}}{\ln \frac{s\varepsilon }{R}}\varepsilon ^{\sigma _1}|\ln \varepsilon |+O\left( \lambda _\varepsilon \varepsilon ^{\sigma _1}+\varepsilon ^{2\sigma _1}|\ln \varepsilon |\right) <0. \end{aligned} \end{aligned}$$

Since \(0<\sigma <\sigma _1\), we have \(B_{s\varepsilon (1+\varepsilon ^{\sigma _1}|\ln \varepsilon |)}(x_i)\subset B_{s\varepsilon (1+\varepsilon ^{\sigma })}(x_i)\) for \(\varepsilon >0\) small. We therefore complete the proof. \(\square \)

Appendix C. Energy expansion

In this appendix, we will estimate

$$\begin{aligned} \mathcal {E}\left( \sum \limits _{j=1}^k PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}+\omega _{\varepsilon ,\textbf{x}}\right) \end{aligned}$$

and its derivatives with respect to \(x_{i,l}\) for \(i=1,\cdots , k\), \(l=1,2\), where \(\mathcal {E}\) is defined by (1.14).

Lemma C.1

There holds

$$\begin{aligned} \mathcal {E}\left( \sum \limits _{j=1}^k PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}+ \omega _{\varepsilon ,\textbf{x}}\right) =\mathcal {E}\left( \sum \limits _{j=1}^k PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}\right) +O\left( \frac{\lambda _\varepsilon \varepsilon ^3}{|\ln \varepsilon |}\right) . \end{aligned}$$

Proof

We have

$$\begin{aligned} \begin{aligned}&\mathcal {E}\left( \sum \limits _{j=1}^k PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}+ \omega _{\varepsilon ,\textbf{x}}\right) \\&=\mathcal {E}\left( \sum \limits _{j=1}^k PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}\right) +\varepsilon ^2\sum \limits _{j=1}^k \int _\Omega \;\nabla PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}\cdot \nabla \omega _{\varepsilon ,\textbf{x}}+\frac{\varepsilon ^2}{2}\int _\Omega \; |\nabla \omega _{\varepsilon ,\textbf{x}}|^2 \\&\quad -\frac{1}{2}\int _\Omega \bigg [\left( \sum \limits _{j=1}^k PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}+ \omega _{\varepsilon ,\textbf{x}}-\kappa +\lambda _\varepsilon \eta \right) _+^2- \left( \sum \limits _{j=1}^k PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}-\kappa +\lambda _\varepsilon \eta \right) _+^2\bigg ]. \end{aligned} \end{aligned}$$

By Proposition 2.5 and Lemma B.1,

$$\begin{aligned} \begin{aligned}&\int _\Omega \bigg [\left( \sum \limits _{j=1}^k PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}+ \omega _{\varepsilon ,\textbf{x}}-\kappa +\lambda _\varepsilon \eta \right) _+^2- \left( \sum \limits _{j=1}^k PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}-\kappa +\lambda _\varepsilon \eta \right) _+^2\bigg ] \\&= \int _{\cup _{i=1}^k B_{2s\varepsilon }(x_i)} \bigg [\left( \sum \limits _{j=1}^k PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}+ \omega _{\varepsilon ,\textbf{x}}-\kappa +\lambda _\varepsilon \eta \right) _+^2- \left( \sum \limits _{j=1}^k PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}-\kappa +\lambda _\varepsilon \eta \right) _+^2\bigg ] \\&=O\left( \frac{\varepsilon ^2}{|\ln \varepsilon |}\Vert \omega _{\varepsilon ,\textbf{x}}\Vert _{L^\infty (\Omega )} \right) = O\left( \frac{\lambda _\varepsilon \varepsilon ^3}{|\ln \varepsilon |}\right) . \end{aligned} \end{aligned}$$

On the other hand, for \(j=1,\cdots ,k\),

$$\begin{aligned} \begin{aligned} \varepsilon ^2\int _\Omega \;\nabla PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}\cdot \nabla \omega _{\varepsilon ,\textbf{x}}=&-\varepsilon ^2\int _\Omega \;\Delta (PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}) \omega _{\varepsilon ,\textbf{x}}=\int _\Omega \; (U_{\varepsilon ,x_j,a_{\varepsilon ,j}}-a_{\varepsilon ,j})_+ \omega _{\varepsilon ,\textbf{x}} \\ =&\int _{B_{s\varepsilon }(x_j)}\; (U_{\varepsilon ,x_j,a_{\varepsilon ,j}}-a_{\varepsilon ,j})_+ \omega _{\varepsilon ,\textbf{x}}=O\left( \frac{\lambda _\varepsilon \varepsilon ^3}{|\ln \varepsilon |}\right) .\end{aligned} \end{aligned}$$

Finally, we estimate the term \(\frac{\varepsilon ^2}{2}\int _\Omega \; |\nabla \omega _{\varepsilon ,\textbf{x}}|^2\). To do this, we first need to estimate the constants \(b_{jh}\), \(j=1,\cdots ,k\), \(h=1,2\) in (2.26), which satisfies

$$\begin{aligned} \begin{aligned}&\int _\Omega \; \big [-\varepsilon ^2\Delta u_{\varepsilon ,\textbf{x}}-(u_{\varepsilon ,\textbf{x}}-\kappa +\lambda _\varepsilon \eta )_+\big ]\frac{\partial PU_{\varepsilon ,x_i,a_{\varepsilon ,i}}}{\partial x_{i,l}} \\ =&\sum _{j=1}^k\sum _{h=1}^2b_{jh} \int _\Omega \; \xi \left( \frac{|y-x_j|}{s\varepsilon } \right) \frac{\partial U_{\varepsilon ,x_j,a_{\varepsilon ,j}}}{\partial x_{j,h}} \frac{\partial PU_{\varepsilon ,x_i,a_{\varepsilon ,i}}}{\partial x_{i,l}}. \end{aligned} \end{aligned}$$
(C.1)

By (2.11) and (2.12),

$$\begin{aligned} \begin{aligned}&\int _\Omega \; \xi \left( \frac{|y-x_j|}{s\varepsilon } \right) \frac{\partial U_{\varepsilon ,x_j,a_{\varepsilon ,j}}}{\partial x_{j,h}} \frac{\partial PU_{\varepsilon ,x_i,a_{\varepsilon ,i}}}{\partial x_{i,l}} \\ =&\int _{B_{2s\varepsilon }(x_j)}\; \xi \left( \frac{|y-x_j|}{s\varepsilon } \right) \frac{\partial U_{\varepsilon ,x_j,a_{\varepsilon ,j}}}{\partial x_{j,h}} \frac{\partial U_{\varepsilon ,x_i,a_{\varepsilon ,i}}}{\partial x_{i,l}}+O\left( \frac{\lambda _\varepsilon \varepsilon }{|\ln \varepsilon |}\right) \\ =&(\delta _{ij}\delta _{hl}c^\prime +o(1))\frac{1}{|\ln \varepsilon |^2}, \end{aligned} \end{aligned}$$

where \(c^\prime >0\) is a constant, \(\delta _{ij}=1\) if \(i=j\), otherwise, \(\delta _{ij}=0\). On the other hand,

$$\begin{aligned} \begin{aligned} \text {LHS of }{(C.1)}=&\int _\Omega \; \Big [\sum \limits _{j=1}^k(U_{\varepsilon ,x_j,a_{\varepsilon ,j}}-a_{\varepsilon ,j})_+-(u_{\varepsilon ,\textbf{x}}-\kappa +\lambda _\varepsilon \eta )_+\Big ]\frac{\partial PU_{\varepsilon ,x_i,a_{\varepsilon ,i}}}{\partial x_{i,l}}\\&-\varepsilon ^2\int _\Omega \; (\Delta \omega _{\varepsilon ,\textbf{x}})\frac{\partial PU_{\varepsilon ,x_i,a_{\varepsilon ,i}}}{\partial x_{i,l}}. \end{aligned} \end{aligned}$$

We derive from

$$\begin{aligned} \begin{aligned}&\int _\Omega \; \Big [\sum \limits _{j=1}^k(U_{\varepsilon ,x_j,a_{\varepsilon ,j}}-a_{\varepsilon ,j})_+-(u_{\varepsilon ,\textbf{x}}-\kappa +\lambda _\varepsilon \eta )_+\Big ]\frac{\partial PU_{\varepsilon ,x_i,a_{\varepsilon ,i}}}{\partial x_{i,l}} \\ =&\sum \limits _{j=1}^k\int _{B_{2s\varepsilon }(x_j)}\; \Big [(U_{\varepsilon ,x_j,a_{\varepsilon ,j}}-a_{\varepsilon ,j})_+-(U_{\varepsilon ,x_j,a_{\varepsilon ,j}}-a_{\varepsilon ,j}+O(\lambda _\varepsilon \varepsilon ))_+\Big ]\frac{\partial PU_{\varepsilon ,x_i,a_{\varepsilon ,i}}}{\partial x_{i,l}} \\ =&\left( \frac{\lambda _\varepsilon \varepsilon ^2}{|\ln \varepsilon |}\right) , \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} \varepsilon ^2\int _\Omega \; (\Delta \omega _{\varepsilon ,\textbf{x}})\frac{\partial PU_{\varepsilon ,x_i,a_{\varepsilon ,i}}}{\partial x_{i,l}}=&\varepsilon ^2\int _\Omega \; \omega _{\varepsilon ,\textbf{x}}\Delta \left( \frac{\partial PU_{\varepsilon ,x_i,a_{\varepsilon ,i}}}{\partial x_{i,l}}\right) \\ =&-\int _{B_{s\varepsilon }(x_i)} \left( \frac{\partial U_{\varepsilon ,x_i,a_{\varepsilon ,i}}}{\partial x_{i,l}}-\frac{\partial a_{\varepsilon ,i}}{\partial x_{i,l}}\right) \omega _{\varepsilon ,\textbf{x}} \\ =&\left( \frac{\lambda _\varepsilon \varepsilon ^2}{|\ln \varepsilon |}\right) \end{aligned} \end{aligned}$$

that

$$\begin{aligned} b_{jh}=O(\lambda _\varepsilon |\ln \varepsilon |\varepsilon ^2). \end{aligned}$$
(C.2)

Testing (2.26) by \(\omega _{\varepsilon ,\textbf{x}}\) and integrating on \(\Omega \), we obtain

$$\begin{aligned} \begin{aligned} \varepsilon ^2\int _\Omega \; |\omega _{\varepsilon ,\textbf{x}}|^2=&\int _\Omega \; \Big ((u_{\varepsilon ,\textbf{x}}-\kappa +\lambda _\varepsilon \eta )_+-\sum \limits _{j=1}^k(U_{\varepsilon ,x_j,a_{\varepsilon ,j}}-a_{\varepsilon ,j})_+\Big )\omega _{\varepsilon ,\textbf{x}} \\&+\sum _{j=1}^k\sum _{h=1}^2b_{jh}\int _\Omega \; \xi \left( \frac{|y-x_j|}{s\varepsilon } \right) \frac{\partial U_{\varepsilon ,x_j,a_{\varepsilon ,j}}}{\partial x_{j,h}}\omega _{\varepsilon ,\textbf{x}} \\ =&O\left( \lambda _\varepsilon \varepsilon ^3\Vert \omega _{\varepsilon ,\textbf{x}}\Vert _{L^\infty (\Omega )}+\sum _{j=1}^k\sum _{h=1}^2|b_{jh}|\frac{\varepsilon }{|\ln \varepsilon |}\Vert \omega _{\varepsilon ,\textbf{x}}\Vert _{L^\infty (\Omega )}\right) \\ =&O(\lambda _\varepsilon ^2\varepsilon ^4). \end{aligned} \end{aligned}$$

The conclusion follows. \(\square \)

Lemma C.2

We have

$$\begin{aligned} \begin{aligned} \mathcal {E}\left( \sum \limits _{j=1}^k PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}\right) =&\frac{k\pi \varepsilon ^2}{\ln \frac{R}{s\varepsilon }}(\kappa -\lambda _\varepsilon )\left( \kappa -\lambda _\varepsilon +\frac{\kappa }{\ln \frac{R}{s\varepsilon }}\ln R\right) \\&+\frac{\kappa \pi \varepsilon ^2}{|\ln \varepsilon |}\sum \limits _{i=1}^k \Bigg [ 2\lambda _\varepsilon \frac{\eta (\hat{x}_i)}{\partial \nu }d_i+\frac{\kappa }{|\ln \varepsilon |}\ln \frac{1}{2d_i} -2\pi \frac{\kappa }{|\ln \varepsilon |}\sum \limits _{j\ne i}^kG(x_i,x_j) \Bigg ] \\&+O\left( \frac{\varepsilon ^2}{\lambda _\varepsilon |\ln \varepsilon |^3}+\frac{\lambda _\varepsilon \varepsilon ^2\ln |\ln \varepsilon |}{|\ln \varepsilon |^2}\right) . \end{aligned} \end{aligned}$$

Proof

Straightforwardly, we have

$$\begin{aligned} \begin{aligned}&\varepsilon ^2\int _\Omega \,\Big |\nabla \Big (\sum \limits _{j=1}^k PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}\Big )\Big |^2 \\ =&\sum \limits _{i=1}^k \int _\Omega \,\big (-\varepsilon ^2\Delta PU_{\varepsilon ,x_i,a_{\varepsilon ,i}}\big )PU_{\varepsilon ,x_i,a_{\varepsilon ,i}}+\sum \limits _{ i\ne j}\int _\Omega \,\big (-\varepsilon ^2\Delta PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}\big )PU_{\varepsilon ,x_i,a_{\varepsilon ,i}}. \end{aligned} \end{aligned}$$

Note that \(\int _{B_s(0)}\varphi _1=-2\pi s\varphi _1^\prime (s)\) and \(\int _{B_s(0)}\varphi _1^2=\pi (s\varphi _1^\prime (s))^2\). The definition of \(U_{\varepsilon ,x_i,a_{\varepsilon ,i}}\) in (1.8) enables us to show that

$$\begin{aligned} \begin{aligned} \int _\Omega \, \big (U_{\varepsilon ,x_i,a_{\varepsilon ,i}}-a_{\varepsilon ,i}\big )_+=&\frac{a_{\varepsilon ,i}}{s\varphi _1^\prime (s)\ln \frac{s\varepsilon }{R}}\int _{B_{s\varepsilon }(x_i)}\; \varphi _1\left( \frac{|y-x_i|}{\varepsilon }\right) \\ =&\frac{a_{\varepsilon ,i}}{s\varphi _1^\prime (s)\ln \frac{s\varepsilon }{R}}\varepsilon ^2\int _{B_{s}(0)}\; \varphi _1(z)dz \\ =&2\pi \varepsilon ^2 \frac{a_{\varepsilon ,i}}{\ln \frac{R}{s\varepsilon }} \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} \int _\Omega \, \big (U_{\varepsilon ,x_i,a_{\varepsilon ,i}}-a_{\varepsilon ,i}\big )_+^2=&\left( \frac{a_{\varepsilon ,i}}{s\varphi _1^\prime (s)\ln \frac{s\varepsilon }{R}}\right) ^2\int _{B_{s\varepsilon }(x_i)}\; \varphi _1^2\left( \frac{|y-x_i|}{\varepsilon }\right) \\ =&\left( \frac{a_{\varepsilon ,i}}{s\varphi _1^\prime (s)\ln \frac{s\varepsilon }{R}}\right) ^2\varepsilon ^2\int _{B_{s}(0)}\; \varphi ^2_1(z)dz \\ =&\pi \varepsilon ^2\left( \frac{a_{\varepsilon ,i}}{\ln \frac{R}{s\varepsilon }}\right) ^2. \end{aligned} \end{aligned}$$

By Lemma A.1, we have

$$\begin{aligned} \begin{aligned}&\int _\Omega \,\big (-\varepsilon ^2\Delta PU_{\varepsilon ,x_i,a_{\varepsilon ,i}}\big )PU_{\varepsilon ,x_i,a_{\varepsilon ,i}}=\int _\Omega \,\big ( U_{\varepsilon ,x_i,a_{\varepsilon ,i}}-a_{\varepsilon ,i}\big )_+PU_{\varepsilon ,x_i,a_{\varepsilon ,i}} \\&=\int _\Omega \, \big (U_{\varepsilon ,x_i,a_{\varepsilon ,i}}-a_{\varepsilon ,i}\big )_+^{2} +a_{\varepsilon ,i}\int _\Omega \, \big (U_{\varepsilon ,x_i,a_{\varepsilon ,i}}-a_{\varepsilon ,i}\big )_+ -\frac{a_{\varepsilon ,i}}{\ln \frac{R}{s\varepsilon }}\int _\Omega \, g(y,x_i)\big (U_{\varepsilon ,x_i,a_{\varepsilon ,j}}-a_{\varepsilon ,i}\big )_+ \\&=\pi \varepsilon ^2\left( \frac{a_{\varepsilon ,i}}{\ln \frac{R}{s\varepsilon }}\right) ^2+2\pi \varepsilon ^2 \frac{a_{\varepsilon ,i}}{\ln \frac{R}{s\varepsilon }}\left( a_{\varepsilon ,i} - \frac{a_{\varepsilon ,i}}{\ln \frac{R}{s\varepsilon }}g(x_i,x_i)\right) +O\left( \frac{\lambda _\varepsilon \varepsilon ^3}{|\ln \varepsilon |}\right) , \end{aligned} \end{aligned}$$

and for \(j\ne i\),

$$\begin{aligned} \begin{aligned}&\int _\Omega \,\big (-\varepsilon ^2\Delta PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}\big )PU_{\varepsilon ,x_i,a_{\varepsilon ,i}}=\int _\Omega \,\big ( U_{\varepsilon ,x_j,a_{\varepsilon ,j}}-a_{\varepsilon ,j}\big )_+PU_{\varepsilon ,x_i,a_{\varepsilon ,i}} \\&=2\pi \frac{a_{\varepsilon ,i}}{\ln \frac{R}{s\varepsilon }}\int _\Omega \,G(y,x_i)\big ( U_{\varepsilon ,x_j,a_{\varepsilon ,j}}-a_{\varepsilon ,j}\big )_+ \\&=4\pi ^2 \varepsilon ^2\frac{a_{\varepsilon ,i}}{\ln \frac{R}{s\varepsilon }} \frac{a_{\varepsilon ,j}}{\ln \frac{R}{s\varepsilon }} G(x_j,x_i)+O\left( \frac{\lambda _\varepsilon \varepsilon ^3}{|\ln \varepsilon |}\right) . \end{aligned} \end{aligned}$$

On the other hand, we deduce from (2.13) that

$$\begin{aligned} \begin{aligned} \int _\Omega \Big (\sum \limits _{i=1}^k PU_{\varepsilon ,x_i,a_{\varepsilon ,i}}-\kappa +\lambda _\varepsilon \eta \Big )_+^2 =&\sum \limits _{i=1}^k\int _{B_{2s\varepsilon }(x_i)}\, \Big (U_{\varepsilon ,x_i,a_{\varepsilon ,i}}-a_{\varepsilon ,i}+O(\lambda _\varepsilon \varepsilon )\Big )_+^2 \\ =&\sum \limits _{i=1}^k\int _{B_{s \varepsilon }(x_i)}\, \big (U_{\varepsilon ,x_i,a_{\varepsilon ,i}}-a_{\varepsilon ,i}\big )_+^{2}+O\left( \frac{\lambda _\varepsilon \varepsilon ^3}{|\ln \varepsilon |}\right) \\ =&\pi \varepsilon ^2\sum \limits _{i=1}^k\left( \frac{a_{\varepsilon ,i}}{\ln \frac{R}{s\varepsilon }}\right) ^2 +O\left( \frac{\lambda _\varepsilon \varepsilon ^3}{|\ln \varepsilon |}\right) . \end{aligned} \end{aligned}$$

Equations (2.7) and (2.10) then allow us to find

$$\begin{aligned} \mathcal {E}{} & {} \left( \sum \limits _{j=1}^k PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}\right) \\= & {} \pi \varepsilon ^2 \sum \limits _{i=1}^k\frac{a_{\varepsilon ,i}}{\ln \frac{R}{s\varepsilon }}\left( a_{\varepsilon ,i}- \frac{a_{\varepsilon ,i}}{\ln \frac{R}{s\varepsilon }}g(x_i,x_i) +2\pi \sum \limits _{j\ne i}\frac{a_{\varepsilon ,j}}{\ln \frac{R}{s\varepsilon }}G(x_j,x_i)\right) +O\left( \frac{\lambda _\varepsilon \varepsilon ^3}{|\ln \varepsilon |}\right) \\= & {} \pi \varepsilon ^2 \sum \limits _{i=1}^k\frac{a_{\varepsilon ,i}}{\ln \frac{R}{s\varepsilon }}\big (\kappa -\lambda _\varepsilon \eta (x_i)\big ) +O\left( \frac{\lambda _\varepsilon \varepsilon ^3}{|\ln \varepsilon |}\right) \\= & {} \pi \varepsilon ^2 \sum \limits _{i=1}^k\frac{1}{\ln \frac{R}{s\varepsilon }} \left( \kappa -\lambda _\varepsilon +\lambda _\varepsilon \frac{\partial \eta (\hat{x}_i)}{\partial \nu }d_i+O(\lambda _\varepsilon d_i^2) \right) \Bigg [\left( \kappa -\lambda _\varepsilon +\frac{\kappa }{\ln \frac{R}{s\varepsilon }}\ln R\right) +\lambda _\varepsilon \frac{\eta (\hat{x}_i)}{\partial \nu }d_i \\{} & {} +\frac{\kappa }{\ln \frac{R}{s\varepsilon }}\ln \frac{1}{2d_i}-2\pi \frac{\kappa }{\ln \frac{R}{s\varepsilon }}\sum \limits _{j\ne i}^kG(x_i,x_j) +O\left( \frac{1}{\lambda _\varepsilon |\ln \varepsilon |^2}+\frac{\lambda _\varepsilon \ln |\ln \varepsilon |}{|\ln \varepsilon |}\right) \Bigg ]+O\left( \frac{\lambda _\varepsilon \varepsilon ^3}{|\ln \varepsilon |}\right) \\= & {} \pi \varepsilon ^2 \sum \limits _{i=1}^k\frac{1}{\ln \frac{R}{s\varepsilon }} \left( \kappa -\lambda _\varepsilon +\lambda _\varepsilon \frac{\partial \eta (\hat{x}_i)}{\partial \nu }d_i\right) \Bigg [\left( \kappa -\lambda _\varepsilon +\frac{\kappa }{\ln \frac{R}{s\varepsilon }}\ln R\right) +\lambda _\varepsilon \frac{\eta (\hat{x}_i)}{\partial \nu }d_i\\{} & {} +\frac{\kappa }{\ln \frac{R}{s\varepsilon }}\ln \frac{1}{2d_i}-2\pi \frac{\kappa }{\ln \frac{R}{s\varepsilon }}\sum \limits _{j\ne i}^kG(x_i,x_j)\Bigg ] +O\left( \frac{\varepsilon ^2}{\lambda _\varepsilon |\ln \varepsilon |^3}+\frac{\lambda _\varepsilon \varepsilon ^2\ln |\ln \varepsilon |}{|\ln \varepsilon |^2}\right) \\= & {} \frac{k\pi \varepsilon ^2}{\ln \frac{R}{s\varepsilon }}(\kappa -\lambda _\varepsilon )\left( \kappa -\lambda _\varepsilon +\frac{\kappa }{\ln \frac{R}{s\varepsilon }}\ln R\right) \\{} & {} +\frac{\kappa \pi \varepsilon ^2}{\ln \frac{R}{s\varepsilon }}\sum \limits _{i=1}^k \Bigg [2\lambda _\varepsilon \frac{\eta (\hat{x}_i)}{\partial \nu }d_i+\frac{\kappa }{\ln \frac{R}{s\varepsilon }}\ln \frac{1}{2d_i}-2\pi \frac{\kappa }{\ln \frac{R}{s\varepsilon }}\sum \limits _{j\ne i}^kG(x_i,x_j)\Bigg ]\\{} & {} +O\left( \frac{\varepsilon ^2}{\lambda _\varepsilon |\ln \varepsilon |^3}+\frac{\lambda _\varepsilon \varepsilon ^2\ln |\ln \varepsilon |}{|\ln \varepsilon |^2}\right) . \end{aligned}$$

The conclusion follows from the estimate \(\frac{1}{\ln \frac{R}{s\varepsilon }}=\frac{1}{|\ln \varepsilon |}+O\left( \frac{1}{|\ln \varepsilon |^2}\right) \). \(\square \)

Lemma C.3

We have

$$\begin{aligned} \frac{\partial }{\partial x_{i,l}}\mathcal {E}\left( \sum \limits _{j=1}^k PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}+ \omega _{\varepsilon ,\textbf{x}}\right) =\frac{\partial }{\partial x_{i,l}}\mathcal {E}\left( \sum \limits _{j=1}^k PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}\right) +O\left( \frac{\lambda _\varepsilon \varepsilon ^{2+\sigma }}{|\ln \varepsilon |}\right) , \end{aligned}$$

where \(\sigma >0\) is a small constant.

Proof

It is readily to verify that

$$\begin{aligned} \begin{aligned} \frac{\partial }{\partial x_{i,l}}\mathcal {E}\left( \sum \limits _{j=1}^k PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}+ \omega _{\varepsilon ,\textbf{x}}\right)&= \left\langle \mathcal {E}^\prime \left( \sum \limits _{j=1}^k PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}+ \omega _{\varepsilon ,\textbf{x}}\right) , \sum \limits _{j=1}^k \frac{\partial PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}}{\partial x_{i,l}}\right\rangle \\&\quad +\left\langle \mathcal {E}^\prime \left( \sum \limits _{j=1}^k PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}+ \omega _{\varepsilon ,\textbf{x}}\right) , \frac{\partial \omega _{\varepsilon ,\textbf{x}} }{\partial x_{i,l}}\right\rangle \\&= I +II. \end{aligned} \end{aligned}$$

We estimate I and II separately. It can be derived from Proposition 2.5 and (C.2) that

$$\begin{aligned} \begin{aligned} II=&\sum _{j=1}^k\sum _{h=1}^2b_{jh} \int _\Omega \; \xi \left( \frac{|y-x_j|}{s\varepsilon } \right) \frac{\partial U_{\varepsilon ,x_j,a_{\varepsilon ,j}}}{\partial x_{j,h}} \frac{\partial \omega _{\varepsilon ,\textbf{x}} }{\partial x_{i,l}} \\ =&O\left( \sum _{j=1}^k\sum _{h=1}^2|b_{jh}| \left\| \frac{\partial \omega _{\varepsilon ,\textbf{x}} }{\partial x_{i,l}} \right\| _{L^\infty (\Omega )} \frac{\varepsilon }{|\ln \varepsilon |}\right) \\ =&O\left( \frac{\lambda _\varepsilon \varepsilon ^{2+\sigma }}{|\ln \varepsilon |}\right) . \end{aligned} \end{aligned}$$

While for the estimation of I, since \(\omega _{\varepsilon ,\textbf{x}}\in E_{\varepsilon ,\textbf{x}}\), it follows from (2.12) and Lemma B.1 that

$$\begin{aligned}{} & {} \left\langle \mathcal {E}^\prime \left( \sum \limits _{j=1}^k PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}+ \omega _{\varepsilon ,\textbf{x}}\right) , \sum \limits _{j=1}^k \frac{\partial PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}}{\partial x_{i,l}}\right\rangle \\{} & {} -\left\langle \mathcal {E}^\prime \left( \sum \limits _{j=1}^k PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}\right) , \sum \limits _{j=1}^k \frac{\partial PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}}{\partial x_{i,l}}\right\rangle \\= & {} \int _\Omega \; \left[ \left( \sum \limits _{j=1}^k PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}-\kappa +\lambda _\varepsilon \eta \right) _+-\left( \sum \limits _{j=1}^k PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}+ \omega _{\varepsilon ,\textbf{x}}-\kappa +\lambda _\varepsilon \eta \right) _+\right] \\{} & {} \times \sum \limits _{j=1}^k \frac{\partial PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}}{\partial x_{i,l}}-\varepsilon ^2 \sum \limits _{j=1}^k \int _\Omega \; \Delta \left( \frac{\partial PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}}{\partial x_{i,l}}\right) \omega _{\varepsilon ,\textbf{x}} \\= & {} \int _{B_{s\varepsilon (1+\varepsilon ^{\sigma })}(x_i)}\; \left[ \left( \sum \limits _{j=1}^k PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}-\kappa +\lambda _\varepsilon \eta \right) _+ \right. \\ {}{} & {} \left. -\left( \sum \limits _{j=1}^k PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}+ \omega _{\varepsilon ,\textbf{x}}-\kappa +\lambda _\varepsilon \eta \right) _+\right] \frac{\partial U_{\varepsilon ,x_i,a_{\varepsilon ,i}}}{\partial x_{i,l}} \\{} & {} +O\left( \lambda _\varepsilon \varepsilon ^2 \Vert \omega _{\varepsilon ,\textbf{x}}\Vert _{L^\infty (\Omega )} \right) \\= & {} -\int _{B_{s\varepsilon (1-\varepsilon ^{\sigma })}(x_i)}\; \omega _{\varepsilon ,\textbf{x}} \frac{\partial U_{\varepsilon ,x_i,a_{\varepsilon ,i}}}{\partial x_{i,l}} +O\left( \lambda _\varepsilon \varepsilon ^2 \Vert \omega _{\varepsilon ,\textbf{x}}\Vert _{L^\infty (\Omega )}+ \frac{\varepsilon ^{1+\sigma }}{|\ln \varepsilon |}\Vert \omega _{\varepsilon ,\textbf{x}}\Vert _{L^\infty (\Omega )}\right) \\= & {} \varepsilon ^2\int _{\Omega }\; \omega _{\varepsilon ,\textbf{x}} \Delta \left( \frac{\partial PU_{\varepsilon ,x_i,a_{\varepsilon ,i}}}{\partial x_{i,l}}\right) +O\left( \lambda _\varepsilon \varepsilon ^2 \Vert \omega _{\varepsilon ,\textbf{x}}\Vert _{L^\infty (\Omega )}+ \frac{\varepsilon ^{1+\sigma }}{|\ln \varepsilon |}\Vert \omega _{\varepsilon ,\textbf{x}}\Vert _{L^\infty (\Omega )}\right) \\= & {} O\left( \frac{\lambda _\varepsilon \varepsilon ^{2+\sigma }}{|\ln \varepsilon |}\right) . \end{aligned}$$

We complete the proof. \(\square \)

Lemma C.4

We have

$$\begin{aligned} \begin{aligned}&\frac{\partial }{\partial x_{i,l}}\mathcal {E}\left( \sum \limits _{j=1}^k PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}\right) \\ =&-\frac{2\pi \kappa \varepsilon ^2}{|\ln \varepsilon |} \left( \lambda _\varepsilon \frac{\partial \eta (x_i)}{\partial x_{i,l}}-\pi \frac{\kappa }{|\ln \varepsilon |} \frac{\partial \varphi (x_i)}{\partial x_{i,l}}+2\pi \sum \limits _{j\ne i} ^k\frac{\kappa }{|\ln \varepsilon |}\frac{\partial G(x_i,x_j)}{\partial x_{i,l}}+O(\lambda _\varepsilon ^2)\right) . \end{aligned} \end{aligned}$$

In particular, it follows from (A.2) and (A.7) that

$$\begin{aligned} \begin{aligned} \frac{\partial }{\partial \nu _i}\mathcal {E}\left( \sum \limits _{j=1}^k PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}\right) =-\frac{\pi \kappa \varepsilon ^2}{|\ln \varepsilon |} \left( 2\lambda _\varepsilon \frac{\partial \eta (x_i)}{\partial \nu _i}-\frac{\kappa }{|\ln \varepsilon |} \frac{1}{d_i}+O\Big (\lambda _\varepsilon ^2+\frac{1}{|\ln \varepsilon |}+\frac{\lambda _\varepsilon }{|\ln \varepsilon |^{\theta _0}}\Big )\right) , \end{aligned} \end{aligned}$$

where \(\nu _i=\nu (\hat{x}_i)\) is the unit outward normal of \(\partial \Omega \) at \(\hat{x}_i\).

Proof

It can be shown that

$$\begin{aligned} \begin{aligned}&\frac{\partial }{\partial x_{i,l}}\mathcal {E}\left( \sum \limits _{j=1}^k PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}\right) =\left\langle \mathcal {E}^\prime \left( \sum \limits _{j=1}^k PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}\right) , \sum \limits _{j=1}^k \frac{\partial PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}}{\partial x_{i,l}}\right\rangle \\ =&\int _\Omega \bigg ( -\varepsilon ^2\Delta \Big (\sum \limits _{j=1}^k PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}\Big )-\Big (\sum \limits _{j=1}^k PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}-\kappa +\lambda _\varepsilon \eta \Big )_+\bigg ) \sum \limits _{j=1}^k \frac{\partial PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}}{\partial x_{i,l}} \\ =&\int _\Omega \bigg (\sum \limits _{j=1}^k \Big (U_{\varepsilon ,x_j,a_{\varepsilon ,j}}-a_{\varepsilon ,j}\Big )_+-\Big (\sum \limits _{j=1}^k PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}-\kappa +\lambda _\varepsilon \eta \Big )_+\bigg ) \sum \limits _{j=1}^k \frac{\partial PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}}{\partial x_{i,l}}. \end{aligned} \end{aligned}$$

By (2.13) and Lemma B.1, we have

$$\begin{aligned} \begin{aligned}&\int _\Omega \bigg (\sum \limits _{j=1}^k \Big (U_{\varepsilon ,x_j,a_{\varepsilon ,j}}-a_{\varepsilon ,j}\Big )_+-\Big (\sum \limits _{j=1}^k PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}-\kappa +\lambda _\varepsilon \eta \Big )_+\bigg ) \sum \limits _{j\ne i}^k \frac{\partial PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}}{\partial x_{i,l}} \\ =&\sum \limits _{j=1}^k \int _{B_{2s\varepsilon }(x_j)}\bigg (\Big (U_{\varepsilon ,x_j,a_{\varepsilon ,j}}-a_{\varepsilon ,j}\Big )_+-\Big (U_{\varepsilon ,x_j,a_{\varepsilon ,j}}-a_{\varepsilon ,j}+O(\lambda _\varepsilon \varepsilon )\Big )_+\bigg ) \sum \limits _{j\ne i}^k \frac{\partial PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}}{\partial x_{i,l}} \\ =&O\left( \lambda _\varepsilon \sum \limits _{j=1}^k \int _{B_{2s\varepsilon }(x_j)}\bigg |\Big (U_{\varepsilon ,x_j,a_{\varepsilon ,j}}-a_{\varepsilon ,j}\Big )_+-\Big (U_{\varepsilon ,x_j,a_{\varepsilon ,j}}-a_{\varepsilon ,j}+O(\lambda _\varepsilon \varepsilon )\Big )_+\bigg | \right) \\ =&O(\lambda _\varepsilon ^2 \varepsilon ^3). \end{aligned} \end{aligned}$$

On the other hand, by (2.12), (2.13) and Lemma B.1 we have

$$\begin{aligned} \begin{aligned}&\int _\Omega \bigg (\sum \limits _{j=1}^k \Big (U_{\varepsilon ,x_j,a_{\varepsilon ,j}}-a_{\varepsilon ,j}\Big )_+-\Big (\sum \limits _{j=1}^k PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}-\kappa +\lambda _\varepsilon \eta \Big )_+\bigg ) \frac{\partial PU_{\varepsilon ,x_i,a_{\varepsilon ,i}}}{\partial x_{i,l}} \\ =&\int _{B_{2s\varepsilon }(x_i)}\bigg (\Big (U_{\varepsilon ,x_i,a_{\varepsilon ,i}}-a_{\varepsilon ,i}\Big )_+-\Big (\sum \limits _{j=1}^k PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}-\kappa +\lambda _\varepsilon \eta \Big )_+\bigg ) \frac{\partial PU_{\varepsilon ,x_i,a_{\varepsilon ,i}}}{\partial x_{i,l}} \\&+\sum \limits _{j\ne i}^k \int _{B_{2s\varepsilon }(x_j)}\bigg (\Big (U_{\varepsilon ,x_j,a_{\varepsilon ,j}}-a_{\varepsilon ,j}\Big )_+-\Big (\sum \limits _{j=1}^k PU_{\varepsilon ,x_j,a_{\varepsilon ,j}}-\kappa +\lambda _\varepsilon \eta \Big )_+\bigg ) \frac{\partial PU_{\varepsilon ,x_i,a_{\varepsilon ,i}}}{\partial x_{i,l}} \\ =&\left( \int _{B_{s\varepsilon (1-\varepsilon ^{\sigma })}(x_i)} + \int _{B_{s\varepsilon (1+\varepsilon ^{\sigma })}(x_i)\setminus B_{s\varepsilon (1-\varepsilon ^{\sigma })}(x_i)}\right) \bigg (\Big (U_{\varepsilon ,x_i,a_{\varepsilon ,i}}-a_{\varepsilon ,i}\Big )_+ \\&-\Big (U_{\varepsilon ,x_i,a_{\varepsilon ,i}}-a_{\varepsilon ,i}+h_{\varepsilon ,i}+O(\varepsilon ^{1+\sigma })\Big )_+\bigg ) \frac{\partial PU_{\varepsilon ,x_i,a_{\varepsilon ,i}}}{\partial x_{i,l}}+O(\lambda _\varepsilon ^2\varepsilon ^3) \\ =&-\int _{B_{s\varepsilon (1-\varepsilon ^{\sigma })}(x_i)}h_{\varepsilon ,i} \frac{\partial PU_{\varepsilon ,x_i,a_{\varepsilon ,i}}}{\partial x_{i,l}}+O\left( \frac{\varepsilon ^{2+\sigma }}{|\ln \varepsilon |}\right) \\ =&-\int _{B_{s\varepsilon }(x_i)}h_{\varepsilon ,i} \frac{\partial U_{\varepsilon ,x_i,a_{\varepsilon ,i}}}{\partial x_{i,l}}+O\left( \frac{\varepsilon ^{2+\sigma }}{|\ln \varepsilon |}\right) , \end{aligned} \end{aligned}$$

where

$$\begin{aligned} h_{\varepsilon ,i}(y)=\lambda _\varepsilon \langle \nabla \eta (x_i),y-x_i \rangle -\frac{a_{\varepsilon ,i}}{\ln \frac{R}{s\varepsilon }}\langle \nabla g(x_i,x_i),y-x_i\rangle +2\pi \sum \limits _{j\ne i} ^k\frac{a_{\varepsilon ,j}}{\ln \frac{R}{s\varepsilon }}\langle \nabla G(x_i,x_j),y-x_i\rangle . \end{aligned}$$

Since \(\int _{B_s(0)} \varphi ^\prime _1(|z|)\frac{z_l^2}{|z|}=2\pi s \varphi _1^\prime (s),\,\, a_{\varepsilon ,i}=\kappa +O(\lambda _\varepsilon )\,\,\textrm{and }\,\,\frac{1}{\ln \frac{R}{s\varepsilon }}=\frac{1}{|\ln \varepsilon |}+O(\frac{1}{|\ln \varepsilon |^2})\), by (2.12), we deduce

$$\begin{aligned} \begin{aligned}&\int _{B_{s\varepsilon }(x_i)}h_{\varepsilon ,i} \frac{\partial U_{\varepsilon ,x_i,a_{\varepsilon ,i}}}{\partial x_{i,l}}=\int _{B_{s\varepsilon }(x_i)}h_{\varepsilon ,i}(y) \frac{a_{\varepsilon ,i}}{s\varepsilon \varphi _1^\prime (s)\ln \frac{s\varepsilon }{R}} \varphi _1^\prime \left( \frac{|y-x_i|}{\varepsilon }\right) \frac{x_{i,l}-y_l}{|y-x_i|}+O(\lambda _\varepsilon ^2\varepsilon ^3)\\ =&-\frac{a_{\varepsilon ,i}\varepsilon }{s\varphi _1^\prime (s)\ln \frac{s\varepsilon }{R}}\int _{B_s(0)}h_{\varepsilon ,i}(\varepsilon z+x_i)\varphi ^\prime _1(|z|)\frac{z_l}{|z|}+O(\lambda _\varepsilon ^2\varepsilon ^3)\\ =&-\frac{a_{\varepsilon ,i}\varepsilon ^2}{s\varphi _1^\prime (s)\ln \frac{s\varepsilon }{R}}\left( \lambda _\varepsilon \frac{\partial \eta (x_i)}{\partial x_{i,l}}-\frac{a_{\varepsilon ,i}}{\ln \frac{R}{s\varepsilon }} \frac{\partial g(x_i,x_i)}{\partial x_{i,l}}+2\pi \sum \limits _{j\ne i} ^k\frac{a_{\varepsilon ,j}}{\ln \frac{R}{s\varepsilon }}\frac{\partial G(x_i,x_j)}{\partial x_{i,l}}\right) \\&\int _{B_s(0)}\varphi ^\prime _1(|z|)\frac{z_l^2}{|z|}+O(\lambda _\varepsilon ^2\varepsilon ^3)\\ =&\frac{2\pi a_{\varepsilon ,i}\varepsilon ^2}{\ln \frac{R}{s\varepsilon }}\left( \lambda _\varepsilon \frac{\partial \eta (x_i)}{\partial x_{i,l}}-\pi \frac{a_{\varepsilon ,i}}{\ln \frac{R}{s\varepsilon }} \frac{\partial \varphi (x_i)}{\partial x_{i,l}}+2\pi \sum \limits _{j\ne i} ^k\frac{a_{\varepsilon ,j}}{\ln \frac{R}{s\varepsilon }}\frac{\partial G(x_i,x_j)}{\partial x_{i,l}}\right) +O(\lambda _\varepsilon ^2\varepsilon ^3) \\ =&\frac{2\pi \kappa \varepsilon ^2}{|\ln \varepsilon |} \left( \lambda _\varepsilon \frac{\partial \eta (x_i)}{\partial x_{i,l}}-\pi \frac{\kappa }{|\ln \varepsilon |} \frac{\partial \varphi (x_i)}{\partial x_{i,l}}+2\pi \sum \limits _{j\ne i} ^k\frac{\kappa }{|\ln \varepsilon |}\frac{\partial G(x_i,x_j)}{\partial x_{i,l}}+O(\lambda _\varepsilon ^2)\right) , \end{aligned} \end{aligned}$$

which leads to the conclusion. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Yang, J. & Yu, W. Boundary plasmas for a confined plasma problem in dimensional two. Calc. Var. 62, 77 (2023). https://doi.org/10.1007/s00526-022-02421-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02421-2

Mathematics Subject Classification

Navigation