Skip to main content
Log in

Yamabe problem in the presence of singular Riemannian Foliations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Using variational methods together with symmetries given by singular Riemannian foliations with positive dimensional leaves, we prove the existence of an infinite number of sign-changing solutions to Yamabe type problems, which are constant along the leaves of the foliation, and one positive solution of minimal energy among any other solution with these symmetries. In particular, we find sign-changing solutions to the Yamabe problem on the round sphere with new qualitative behavior when compared to previous results, that is, these solutions are constant along the leaves of a singular Riemannian foliation which is not induced neither by a group action nor by an isoparametric function. To prove the existence of these solutions, we prove a Sobolev embedding theorem for general singular Riemannian foliations, and a Principle of Symmetric Criticality for the associated energy functional to a Yamabe type problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availibility

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Adams, R.A.: Sobolev Spaces, Volume 65 of Pure and Applied Mathematics Series. Academic Press, Cambridge (1975)

    Google Scholar 

  2. Alexandrino, M.M., Bettiol, R.G.: Lie Groups and Geometric Aspects of Isometric Actions. Springer, Cham (2015)

    Book  MATH  Google Scholar 

  3. Alexandrino, M.M., Cavenaghi, L.F.: Singular Riemannian Foliations and the prescribing scalar curvature problem. arXiv:2111.13257 [math.DG] (2021)

  4. Ammann, B., Humbert, E.: The second Yamabe invariant. J. Funct. Anal. 235, 377–412 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aubin, T.: Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. (9) 55, 269–296 (1976)

    MathSciNet  MATH  Google Scholar 

  6. Aubin, T.: Some Nonlinear Problems in Riemannian Geometry. Springer Monographs in Mathematics. Springer, Berlin (1998)

    Book  Google Scholar 

  7. Bartsch, T., Schneider, M., Weth, T.: Multiple solutions of a critical polyharmonic equation. J. Reine Angew. Math. 571, 131–143 (2004)

    MathSciNet  MATH  Google Scholar 

  8. Brendle, S.: Blow-up phenomena for the Yamabe equation. J. Am. Math. Soc. 21, 951–979 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brendle, S., Marques, F.C.: Blow-up phenomena for the Yamabe equation. II. J. Differ. Geom. 81, 225–250 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Castro, A., Cossio, J., Neuberger, J.M.: A sign-changing solution for a superlinear Dirichlet problem. Rocky Mt. J. Math. 27, 1041–1053 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cavenaghi, L.F., do Ó, J.M., Sperança, L.D.: The symmetric Kazdan–Warner problem and applications. arXiv:2106.14709 [math.DG] (2021)

  12. Clapp, M., Fernández, J.C.: Multiplicity of nodal solutions to the Yamabe problem. Calc. Var. Partial Differ. Equ. 56, Paper No. 145, 22 (2017)

  13. Clapp, M., Pacella, F.: Multiple solutions to the pure critical exponent problem in domains with a hole of arbitrary size. Math. Z. 259, 575–589 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Clapp, M., Pistoia, A.: Yamabe systems and optimal partitions on manifolds with symmetries. Electron. Res. Arch. 29, 4327–433 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Clapp, M., Saldaña, A., Szulkin, A.: Phase separation, optimal partitions, and nodal solutions to the Yamabe equation on the sphere. Int. Math. Res. Not. IMRN 25, 3633–3652 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Clapp, M., Tiwari, S.: Multiple solutions to a pure supercritical problem for the p-Laplacian. Calc. Var. Partial Differ. Equ. 55, Paper No. 7, 23 (2016)

  17. Clapp, M., Weth, T.: Multiple solutions for the Brezis–Nirenberg problem. Adv. Differ. Equ. 10, 463–480 (2005)

    MathSciNet  MATH  Google Scholar 

  18. Corro, D.: Manifolds with aspherical singular Riemannian foliations. Ph.D. thesis, Karlsruhe Institute of Technology (2018). https://publikationen.bibliothek.kit.edu/1000085363

  19. Corro, D., Moreno, A.: Core reduction for singular Riemannian foliations in positive curvature. Ann. Global. Anal. Geom. 62, 617–634 (2022). arXiv:2011.05303 [math.DG]

  20. Deimling, K.: Ordinary Differential Equations in Banach Spaces. Lecture Notes in Mathematics, vol. 596. Springer, Berlin (1977)

    Book  MATH  Google Scholar 

  21. del Pino, M., Musso, M., Pacard, F., Pistoia, A.: Large energy entire solutions for the Yamabe equation. J. Differ. Equ. 251, 2568–2597 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ding, W.Y.: On a conformally invariant elliptic equation on \({ R}^n\). Commun. Math. Phys. 107, 331–335 (1986)

    Article  MATH  Google Scholar 

  23. Farrell, F.T., Wu, X.: Riemannian foliation with exotic tori as leaves. Bull. Lond. Math. Soc. 51, 745–750 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fernández, J.C., Palmas, O., Petean, J.: Supercritical elliptic problems on the round sphere and nodal solutions to the Yamabe problem in projective spaces. Discrete Contin. Dyn. Syst. 40, 2495–2514 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fernández, J.C., Petean, J.: Low energy nodal solutions to the Yamabe equation. J. Differ. Equ. 268, 6576–6597 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ferus, D., Karcher, H., Münzner, H.F.: Cliffordalgebren und neue isoparametrische Hyperflächen. Math. Z. 177, 479–502 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  27. Galaz-García, F., Kell, M., Mondino, A., Sosa, G.: On quotients of spaces with Ricci curvature bounded below. J. Funct. Anal. 275, 1368–1446 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Galaz-Garcia, F., Radeschi, M.: Singular Riemannian foliations and applications to positive and non-negative curvature. J. Topol. 8, 603–620 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ge, J., Radeschi, M.: Differentiable classification of 4-manifolds with singular Riemannian foliations. Math. Ann. 363, 525–548 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gromoll, D., Walschap, G.: Metric Foliations and Curvature. Progress in Mathematics, vol. 268. Birkhäuser Verlag, Basel (2009)

    Book  MATH  Google Scholar 

  31. Hebey, E., Vaugon, M.: Sobolev spaces in the presence of symmetries. J. Math. Pures Appl. 76, 859–881 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. Heinonen, J., Koskela, P., Shanmugalingam, N., Tyson, J.T.: Sobolev Spaces on Metric Measure Spaces, Volume 27 of New Mathematical Monographs. Cambridge University Press, Cambridge (2015). An approach based on upper gradients

  33. Henry, G.: Isoparametric functions and nodal solutions of the Yamabe equation. Ann. Glob. Anal. Geom. 56, 203–219 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hsiang, W.C., Shaneson, J.L.: Fake tori, the annulus conjecture, and the conjectures of Kirby. Proc. Nat. Acad. Sci. USA 62, 687–691 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  35. Khuri, M.A., Marques, F.C., Schoen, R.M.: A compactness theorem for the Yamabe problem. J. Differ. Geom. 81, 143–196 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lee, J.M., Parker, T.H.: The Yamabe problem. Bull. Am. Math. Soc. (N.S.) 17, 37–91 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lytchak, A., Thorbergsson, G.: Curvature explosion in quotients and applications. J. Differ. Geom. 85, 117–139 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Megginson, R.E.: An Introduction to Banach Space Theory, Volume 183 of Graduate Texts in Mathematics, vol. 183. Springer, New York (1998)

    Book  Google Scholar 

  39. Mendes, R.A.E., Radeschi, M.: A slice theorem for singular Riemannian foliations, with applications. Trans. Am. Math. Soc. 371, 4931–4949 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Moerdijk, I., Mrčun, J.: Introduction to Foliations and Lie Groupoids. Cambridge Studies in Advanced Mathematics, vol. 91. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  41. Molino, P.: Riemannian Foliations. Progress in Mathematics, vol. 73. Birkhäuser, Boston (1988)

    Book  MATH  Google Scholar 

  42. Palais, R.S.: The principle of symmetric criticality. Commun. Math. Phys. 69, 19–30 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  43. Radeschi, M.: Clifford algebras and new singular Riemannian foliations in spheres. Geom. Funct. Anal. 24, 1660–1682 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Radeschi, M.: Lecture notes on singular Riemannian foliations (2017). https://static1.squarespace.com/static/5994498937c5815907f7eb12/t/5998477717bffc656afd46e0/1503151996268/SRF+Lecture+Notes.pdf. Last visited on 26 April 2021

  45. Schoen, R.: Conformal deformation of a Riemannian metric to constant scalar curvature. J. Differ. Geom. 20, 479–495 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sullivan, D.: A counterexample to the periodic orbit conjecture. Inst. Hautes Études Sci. Publ. Math. 25, 5–14 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  47. Trudinger, N.S.: Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 22, 265–274 (1968)

    MathSciNet  MATH  Google Scholar 

  48. Vétois, J.: Multiple solutions for nonlinear elliptic equations on compact Riemannian manifolds. Int. J. Math. 18, 1071–1111 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wang, G., Zhang, Y.: A conformal integral invariant on Riemannian foliations. Proc. Am. Math. Soc. 141, 1405–1414 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  50. Wilking, B.: A duality theorem for Riemannian foliations in nonnegative sectional curvature. Geom. Funct. Anal. 17, 1297–1320 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  51. Willem, M.: Minimax Theorems, Volume 24 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser, Basel (1996)

    Google Scholar 

  52. Yamabe, H.: On a deformation of Riemannian structures on compact manifolds. Osaka Math. J. 12, 21–37 (1960)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Monica Clapp for useful conversations about the question posted in the introduction. We also thank Jimmy Petean for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Fernandez.

Additional information

Communicated by A. Mondino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

D. Corro: Supported by DGAPA-Fellowship associated to the Mathematics Institute of UNAM, campus Oaxaca, and by DFG-Eigenestelle Fellowship CO 2359/1-1. J. C. Fernandez: Partially supported by Professor Christina Sormani’s NSF Reaserch Grant DMS-1612049.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corro, D., Fernandez, J.C. & Perales, R. Yamabe problem in the presence of singular Riemannian Foliations. Calc. Var. 62, 26 (2023). https://doi.org/10.1007/s00526-022-02359-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02359-5

Mathematics Subject Classification

Navigation