Skip to main content
Log in

Augmented Lagrangian methods for degenerate Hamilton–Jacobi equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We suggest a new approach to solve a class of degenerate Hamilton–Jacobi equations without any assumptions on the emptiness of the Aubry set. It is based on the characterization of the maximal subsolution by means of the Fenchel–Rockafellar duality. This approach enables us to use augmented Lagrangian methods as alternatives to the commonly used methods for numerical approximation of the solution, based on finite difference approximation or on optimal control interpretation of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. ALG2 is an abbreviation of algorithm 2 in [20] to calculate efficiently saddle points of functionals of the form \(L_r\). It is essentially based on relaxation of Uzawa’s algorithm.

References

  1. Benamou, J.-D., Carlier, G.: Augmented Lagrangian methods for transport optimization, mean field games and degenerate elliptic equations. J. Optim. Theory Appl. 167(1), 1–26 (2015)

    Article  MathSciNet  Google Scholar 

  2. Benamou, J.-D., Carlier, G., Hatchi, R.: A numerical solution to Monges problem with a Finsler distance as cost. ESAIM: Math. Model. Numer. Anal. 52(6), 2133–2148 (2018)

    Article  MathSciNet  Google Scholar 

  3. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  Google Scholar 

  4. Caboussat, A., Glowinski, R., Pan, T.-W.: On the numerical solution of some Eikonal equations: an elliptic solver approach. Chin. Ann. Math., Ser. B 36(5), 689–702 (2015)

    Article  MathSciNet  Google Scholar 

  5. Camilli, F., Grüne, L.: Numerical approximation of the maximal solutions for a class of degenerate Hamilton-Jacobi equations. SIAM J. Numer. Anal. 38(5), 1540–1560 (2000)

    Article  MathSciNet  Google Scholar 

  6. Camilli, F., Loreti, P., Yamada, N.: Systems of convex Hamilton-Jacobi equations with implicit obstacles and the obstacle problem. Commun. Pure Appl. Anal. 8(4), 1291–1302 (2009)

    Article  MathSciNet  Google Scholar 

  7. Cannarsa, P., Sinestrari, C.: Semiconcave functions, Hamilton–Jacobi equations, and optimal control, volume 58. Springer Science & Business Media (2004)

  8. Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations. Birkhäuser Boston Inc, Boston, MA (1997)

    Book  Google Scholar 

  9. Chen, G.-Q.: Some recent methods for partial differential equations of divergence form. Bull. Braz. Math. Soc. 34(1), 107–144 (2003)

    Article  MathSciNet  Google Scholar 

  10. Chen, G.-Q., Frid, H.: Divergence-measure fields and hyperbolic conservation laws. Arch. Ration. Mech. Anal. 147(2), 89–118 (1999)

    Article  MathSciNet  Google Scholar 

  11. Chen, G.-Q., Frid, H.: Extended divergence-measure fields and the Euler equations for gas dynamics. Commun. Math. Phys. 236(2), 251–280 (2003)

    Article  MathSciNet  Google Scholar 

  12. Crandall, M.G., Ishii, H., Lions, P.-L.: Users guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc., New Ser. 27(1), 1–67 (1992)

    Article  MathSciNet  Google Scholar 

  13. Crandall, M.G., Lions, P.-L.: Viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc. 277(1), 1–42 (1983)

    Article  MathSciNet  Google Scholar 

  14. Danielsson, P.-E.: Euclidean distance mapping. Comput. Graph. Image Process. 14, 227–248 (1980)

    Article  Google Scholar 

  15. Durou, J.-D., Falcone, M., Sagona, M.: Numerical methods for shape-from-shading: a new survey with benchmarks. Comput. Vis. Image Underst. 109(1), 22–43 (2008)

    Article  Google Scholar 

  16. Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55(1–3), 293–318 (1992)

    Article  MathSciNet  Google Scholar 

  17. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems, vol. 28. SIAM (1999)

  18. Falcone, M., Ferretti, R.: Numerical methods for Hamilton–Jacobi type equations. In: Handbook of Numerical Analysis, Vol. 17, pp. 603–626. Elsevier (2016)

  19. Fathi, A., Siconolfi, A.: PDE aspects of Aubry–Mather theory for quasiconvex Hamiltonians. Calc. Var. Partial. Differ. Equ. 22(2), 185–228 (2005)

    Article  MathSciNet  Google Scholar 

  20. Fortin, M., Glowinski, R.: Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems, vol. 15. Elsevier, New York (2000)

    MATH  Google Scholar 

  21. Glowinski, R., Oden, J.T.: Numerical methods for nonlinear variational problems (1985)

  22. Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-splitting Methods in Nonlinear Mechanics, vol. 9. SIAM (1989)

  23. Ennaji, H., Igbida, N., Van Nguyen, T.: A Primal-Dual Algorithm. preprint, Continuous Lambertian Shape from Shading (2021)

  24. Hecht, F.: New development in Freefem++. J. Numer. Math. 20(3–4), 251–266 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Igbida, N.: Metric character for the sub-Hamilton-Jacobi obstacle equation. SIAM J. Math. Anal. 49(4), 3143–3160 (2017)

    Article  MathSciNet  Google Scholar 

  26. Igbida, N., Van Nguyen, T.: Augmented Lagrangian method for optimal partial transportation. IMA J. Numer. Anal. 38(1), 156–183 (2018)

    Article  MathSciNet  Google Scholar 

  27. Igbida, N., Ta, T.N.N.: Sub-gradient diffusion operator. J. Differ. Equ. 262(7), 3837–3863 (2017)

    Article  MathSciNet  Google Scholar 

  28. Kiseliov, Y.N.: Algorithms of projection of a point onto an ellipsoid. Lith. Math. J. 34(2), 141–159 (1994)

    Article  MathSciNet  Google Scholar 

  29. Lions, P.-L.: Generalized Solutions of Hamilton–Jacobi Equations, vol. 69. Pitman, London (1982)

    MATH  Google Scholar 

  30. Lions, P.-L., Rouy, E., Tourin, A.: Shape-from-shading, viscosity solutions and edges. Numerische Mathematik 64(1), 323–353 (1993)

    Article  MathSciNet  Google Scholar 

  31. Luo, S., Qian, J.: Fast sweeping methods for factored anisotropic Eikonal equations: multiplicative and additive factors. J. Sci. Comput. 52(2), 360–382 (2012)

    Article  MathSciNet  Google Scholar 

  32. Mirebeau, J.-M.: Efficient fast marching with Finsler metrics. Numer. Math. 126(3), 515–557 (2014)

    Article  MathSciNet  Google Scholar 

  33. Mirebeau, J.-M.: Anisotropic fast-marching on Cartesian grids using lattice basis reduction. SIAM J. Numer. Anal. 52(4), 1573–1599 (2014)

    Article  MathSciNet  Google Scholar 

  34. Mirebeau, J.-M., Portegies, J.: Hamiltonian fast marching: a numerical solver for anisotropic and non-holonomic Eikonal PDEs. Image Processing On Line 9, 47–93 (2019)

    Article  MathSciNet  Google Scholar 

  35. Van Nguyen, T.: Monge–Kantorovich equation for degenerate Finsler metrics. Nonlinear Analysis, 206:Art. 112247 (2021)

  36. Prados, E., Camilli, F., Faugeras, O.: A viscosity solution method for shape-from-shading without image boundary data. ESAIM: Math. Model. Numer. Anal. 40(2), 393–412 (2006)

    Article  MathSciNet  Google Scholar 

  37. Rouy, E., Tourin, A.: A viscosity solutions approach to shape-from-shading. SIAM J. Numer. Anal. 29(3), 867–884 (1992)

    Article  MathSciNet  Google Scholar 

  38. Sethian, J.A.: Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, volume 3. Cambridge University Press (1999)

  39. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts, volume 3. Proceedings of the National Academy of Sciences of the United States of America (1996)

  40. Siconolfi, A.: Hamilton–Jacobi equations and Weak KAM Theory, pp. 4540–4561. Springer, New York (2009)

  41. Ruo Zhang, Ping-Sing Tsai, James Edwin Cryer, and Mubarak Shah. Shape-from-shading: a survey. IEEE transactions on pattern analysis and machine intelligence, 21(8):690–706, (1999)

  42. Tyrrell Rockafellar, R.: Convex analysis. Princeton Landmarks in Mathematics (1997)

  43. Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. IEEE Trans. Automat. Control 40(9), 1528–1538 (1995)

    Article  MathSciNet  Google Scholar 

  44. Hiriart-Urrut, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms. I. Springer, Berlin (1993)

    Book  Google Scholar 

  45. Zhao, H.: A fast sweeping method for Eikonal equations. Math. Comput. 74(250), 603–627 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for carefully reading this paper and for the interesting remarks and suggestions. Research of Van Thanh NGUYEN is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 101.01-2018.309.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noureddine Igbida.

Additional information

Communicated by Y. Giga.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ennaji, H., Igbida, N. & Nguyen, V.T. Augmented Lagrangian methods for degenerate Hamilton–Jacobi equations. Calc. Var. 60, 238 (2021). https://doi.org/10.1007/s00526-021-02092-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02092-5

Mathematics Subject Classification

Navigation