Skip to main content
Log in

Local uniqueness of ground states for rotating bose-einstein condensates with attractive interactions

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study ground states of two-dimensional Bose-Einstein condensates with attractive interactions in a trap V(x) rotating at the velocity \(\Omega \). It is known that there exists a critical rotational velocity \(0<\Omega ^*:=\Omega ^*(V)\le \infty \) and a critical number \(0<a^*<\infty \) such that for any rotational velocity \(0\le \Omega <\Omega ^*\), ground states exist if and only if the coupling constant a satisfies \(a<a^*\). For a general class of traps V(x), which may not be symmetric, we prove in this paper that up to a constant phase, there exists a unique ground state as \(a\nearrow a^*\), where \(\Omega \in (0,\Omega ^*)\) is fixed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abo-Shaeer, J.R., Raman, C., Vogels, J.M., Ketterle, W.: Observation of vortex lattices in Bose-Einstein condensate. Science 292, 476 (2001)

    Article  Google Scholar 

  2. Aftalion, A.: Vortices in Bose-Einstein condensates, Progress in Nonlinear Differential Equations and their Applications, 67. Birkh\(\ddot{a}\)user Boston, Inc., Boston, MA, 2006

  3. Aftalion, A.: Vortex patterns in Bose Einstein condensates, Perspectives in nonlinear partial differential equations, Contemp. Math. 446, Amer. Math. Soc., Providence, RI (2007), 1–18

  4. Anderson, M.H., Ensher, J.R., Matthews, M.R., Wieman, C.E., Cornell, E.A.: Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995)

    Article  Google Scholar 

  5. Arbunich, J., Nenciu, I., Sparber, C.: Stability and instability properties of rotating Bose-Einstein condensates. Lett. Math. Phys. 109, 1415–1432 (2019)

    Article  MathSciNet  Google Scholar 

  6. Arioli, G., Szulkin, A.: A semilinear Schr\(\ddot{o}\)dinger equation in the presence of a magnetic field. Arch. Ration. Mech. Anal. 170, 277–295 (2003)

    Article  MathSciNet  Google Scholar 

  7. Bao, W., Cai, Y.: Ground states of two-component Bose-Einstein condensates with an internal atomic Josephson junction. East Asia J. Appl. Math. 1, 49–81 (2011)

    Article  MathSciNet  Google Scholar 

  8. Bartsch, T., Dancer, E.N., Peng, S.: On multi-bump semi-classical bound states of nonlinear Schrödinger equations with electromagnetic fields. Adv. Differ. Equ. 11, 781–812 (2006)

    MATH  Google Scholar 

  9. Bloch, I., Dalibard, J., Zwerger, W.: Many-body physics with ultracold gases. Rev. Modern Phys. 80, 885–964 (2008)

    Article  Google Scholar 

  10. Bradley, C.C., Sackett, C.A., Hulet, R.G.: Bose-Einstein condensation of lithium: observation of limited condensate number. Phys. Rev. Lett. 78, 985 (1997)

    Article  Google Scholar 

  11. Bradley, C. C., Sackett, C. A., Tollett J. J., Hulet, R. G.: Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions, Phys. Rev. Lett. 75 (1995), 1687. Erratum Phys. Rev. Lett. 79 (1997), 1170

  12. Cao, D., Li, S., Luo, P.: Uniqueness of positive bound states with multibump for nonlinear Schr\(\ddot{o}\)dinger equations. Calc. Var. Partial Differ. Equ. 54, 4037–4063 (2015)

    Article  Google Scholar 

  13. Cao, D., Tang, Z.: Existence and uniqueness of multi-bump bound states of nonlinear Schrödinger equations with electromagnetic fields. J. Differ. Equ. 222, 381–424 (2006)

    Article  Google Scholar 

  14. Carr, L.D., Clark, C.W.: Vortices in attractive Bose-Einstein condensates in two dimensions. Phys. Rev. Lett. 97, 010403 (2006)

  15. Cazenave, T.: Semilinear Schr\(\ddot{o}\)dinger equations, Courant Lecture Notes in Mathematics, vol. 10. Courant Institute of Mathematical Science/AMS, New York (2003)

    Google Scholar 

  16. Cazenave, T., Lions, P.L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Comm. Math. Phys. 85(4), 549–561 (1982)

    Article  MathSciNet  Google Scholar 

  17. Cooper, N.R.: Rapidly rotating atomic gases. Adv. Phys. 57, 539–616 (2008)

    Article  Google Scholar 

  18. Correggi, M., Rougerie, N.: Boundary behavior of the Ginzburg-Landau order parameter in the surface superconductivity regime. Arch. Rational Mech. Anal. 219, 553–606 (2016)

    Article  MathSciNet  Google Scholar 

  19. Correggi, M., Rougerie, N., Yngvason, J.: The transition to a giant vortex phase in a fast rotating Bose-Einstein condensate. Comm. Math. Phys. 303, 451–508 (2011)

    Article  MathSciNet  Google Scholar 

  20. Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose-Einstein condensation in trapped gases. Rev. Modern Phys. 71, 463–512 (1999)

    Article  Google Scholar 

  21. Deng, Y., Lin, C., Yan, S.: On the prescribed scalar curvature problem in \(\mathbb{R}^N\), local uniqueness and periodicity. J. Math. Pures Appl. 104, 1013–1044 (2015)

    Article  MathSciNet  Google Scholar 

  22. Esteban, M. J., Lions, P. L.: Stationary solutions of nonlinear Schr\(\ddot{o}\)dinger equations with an external magnetic field, Partial differential equations and the calculus of variations, Vol. I, 401–449, Progr. Nonlinear Differential Equations Appl. 1, Birkhuser Boston, Boston, MA, 1989

  23. Fetter, A.L.: Rotating trapped Bose-Einstein condensates. Rev. Modern Phys. 81, 647–691 (2009)

    Article  Google Scholar 

  24. Frank, R. L.: Ground states of semi-linear PDEs, Lecture notes from summer school on “Current Topics in Mathematical Physics", CIRM Marseille, 2013

  25. Gidas, B., Ni W., Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in \(\mathbb{R}^n\), Mathematical analysis and applications Part A, Adv. in Math. Suppl. Stud. Vol. 7, Academic Press, New York (1981), 369–402

  26. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer (1997)

  27. Grossi, M.: On the number of single-peak solutions of the nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 19, 261–280 (2002)

    Article  MathSciNet  Google Scholar 

  28. Guo, Y., Li, S., Wei, J., Zeng, X.: Ground states of two-component attractive Bose-Einstein condensates II: semi-trivial limit behavior. Trans. Amer. Math. Soc. 371, 6903–6948 (2019)

    Article  MathSciNet  Google Scholar 

  29. Guo, Y., Lin, C., Wei, J.: Local uniqueness and refined spike profiles of ground states for two-dimensional attractive Bose-Einstein condensates. SIAM J. Math. Anal. 49, 3671–3715 (2017)

    Article  MathSciNet  Google Scholar 

  30. Guo, Y., Luo, Y., Yang, W.: The nonexistence of vortices for rotating Bose-Einstein condensates with attractive interactions. Arch. Rational Mech. Anal. 238, 1231–1281 (2020)

    Article  MathSciNet  Google Scholar 

  31. Guo, Y., Seiringer, R.: On the mass concentration for Bose-Einstein condensates with attractive interactions. Lett. Math. Phys. 104, 141–156 (2014)

    Article  MathSciNet  Google Scholar 

  32. Guo, Y., Wang, Z., Zeng, X., Zhou, H.: Properties of ground states of attractive Gross-Pitaevskii equations with multi-well potentials. Nonlinearity 31, 957–979 (2018)

    Article  MathSciNet  Google Scholar 

  33. Guo, Y., Zeng, X., Zhou, H.: Energy estimates and symmetry breaking in attractive Bose-Einstein condensates with ring-shaped potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire 33, 809–828 (2016)

    Article  MathSciNet  Google Scholar 

  34. Han Q., Lin, F.: Elliptic Partial Differential Equations, Courant Lecture Note in Math. 1, Courant Institute of Mathematical Science/AMS, New York, 2011

  35. Huepe, C., Metens, S., Dewel, G., Borckmans, P., Brachet, M.E.: Decay rates in attractive Bose-Einstein condensates. Phys. Rev. Lett. 82, 1616–1619 (1999)

    Article  Google Scholar 

  36. Ignat, R., Millot, V.: The critical velocity for vortex existence in a two-dimensional rotating Bose-Einstein condensate. J. Funct. Anal. 233, 260–306 (2006)

    Article  MathSciNet  Google Scholar 

  37. Ignat, R., Millot, V.: Energy expansion and vortex location for a two-dimensional rotating Bose-Einstein condensate. Rev. Math. Phys. 18, 119–162 (2006)

    Article  MathSciNet  Google Scholar 

  38. Kagan, Y., Muryshev, A.E., Shlyapnikov, G.V.: Collapse and Bose-Einstein condensation in a trapped Bose gas with nagative scattering length. Phys. Rev. Lett. 81, 933–937 (1998)

    Article  Google Scholar 

  39. Kasamatsu, K., Tsubota, M., Ueda, M.: Giant hole and circular superflow in a fast rotating Bose-Einstein condensate. Phys. Rev. B 66, 053606 (2002)

  40. Kwong, M.K.: Uniqueness of positive solutions of \(\Delta u-u+u^p=0\) in\(\mathbb{R}^N\). Arch. Rational Mech. Anal. 105, 243–266 (1989)

  41. Lewin, M., Nam, P.T., Rougerie, N.: A note on 2D focusing many-boson systems. Proc. Amer. Math. Soc. 145, 2441–2454 (2017)

    Article  MathSciNet  Google Scholar 

  42. Lewin, M., Nam, P. T., Rougerie, N.: Blow-up profile of rotating 2D focusing Bose gases, Macroscopic Limits of Quantum Systems, a conference in honor of Herbert Spohn’s 70th birthday, Springer Verlag, 2018, 145–170

  43. Li, G., Peng, S., Wang, C.: Infinitely many solutions for nonlinear Schrödinger equations with electromagnetic fields. J. Differ. Equ. 251, 3500–3521 (2011)

    Article  Google Scholar 

  44. Lieb, E.H., Loss, M.: Analysis, Graduate Studies in Mathematics. Amer, vol. 14, 2nd edn. Math. Soc, Providence, RI (2001)

  45. Lieb, E.H., Seiringer, R.: Derivation of the Gross-Pitaevskii equation for rotating Bose gases. Comm. Math. Phys. 264, 505–537 (2006)

    Article  MathSciNet  Google Scholar 

  46. Lieb, E. H., Seiringer, R., Solovej, J. P., Yngvason, J.: The mathematics of the Bose gas and its condensation, Oberwolfach Seminars, Birkh\(\ddot{a}\)user Verlag, Basel, 2005

  47. Lieb, E.H., Seiringer, R., Yngvason, J.: Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional. Phys. Rev. A 61, 043602 (2000)

  48. Lundh, E., Collin, A., Suominen, K.-A.: Rotational states of Bose gases with attractive interactions in anharmonic traps. Phys. Rev. Lett. 92, 070401 (2004)

  49. Luo, P., Peng, S., Wei, J., Yan, S.: Excited states on Bose-Einstein condensates with attractive interactions. Calc. Var. Partial Diff. Equ. 60, 155 (2021)

  50. Madison, K., Chevy, F., Dalibard, J., Wohlleben, W.: Vortex formation in a stirred Bose-Einstein condensate. Phys. Rev. Lett. 84, 806 (2000)

    Article  Google Scholar 

  51. Madison, K., Chevy, F., Dalibard, J., Wohlleben, W.: Vortices in a stirred Bose-Einstein condensate. J. Mod. Opt. 47, 2715–2723 (2000)

    Article  Google Scholar 

  52. Nam, P.T., Rougerie, N.: Improved stability for 2D attractive Bose gases. J. Math. Phys. 61, 021901 (2020)

  53. Ni, W., Takagi, I.: On the shape of least-energy solutions to a semilinear Neumann problem. Comm. Pure Appl. Math. 44, 819–851 (1991)

    Article  MathSciNet  Google Scholar 

  54. Rougerie, N.: Scaling limits of bosonic ground states, from many-body to nonlinear Schrödinger. EMS Surv. in Math. Sci. 7, 235–408 (2020)

  55. Sackett, C.A., Stoof, H.T.C., Hulet, R.G.: Growth and collapse of a Bose-Einstein condensate with attractive interactions. Phys. Rev. Lett. 80, 2031 (1998)

    Article  Google Scholar 

  56. Weinstein, M.I.: Nonlinear Schr\(\ddot{o}\)dinger equations and sharp interpolations estimates. Comm. Math. Phys. 87, 567–576 (1983)

    Article  Google Scholar 

  57. Wilkin, N.K., Gunn, J.M.F., Smith, R.A.: Do attractive Bosons condense? Phys. Rev. Lett. 80, 2265 (1998)

    Article  Google Scholar 

  58. Zhang, J.: Stability of attractive Bose-Einstein condensates. J. Stat. Phys. 101, 731–746 (2000)

    Article  MathSciNet  Google Scholar 

  59. Zwierlein, M.W., Abo-Shaeer, J.R., Schirotzek, A., Schunck, C.H., Ketterle, W.: Vortices and superfluidity in a strongly interacting fermi gas. Nature 435, 1047–1051 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the referee for many valuable suggestions which lead to the great improvements of the present paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuangjie Peng.

Additional information

Communicated by P. H. Rabinowitz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Y. Guo is partially supported by NSFC under Grant No. 11931012 and also partially supported by the Fundamental Research Funds for the Central Universities (No. KJ02072020-0319)

Y. Luo is partially supported by the Project funded by China Postdoctoral Science Foundation No. 2019M662680

S. Peng is partially supported by the Key Project of NSFC under Grant No.11831009.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Luo, Y. & Peng, S. Local uniqueness of ground states for rotating bose-einstein condensates with attractive interactions. Calc. Var. 60, 237 (2021). https://doi.org/10.1007/s00526-021-02055-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02055-w

Mathematics Subject Classification

Navigation