Skip to main content
Log in

Ground states of spin-1 BEC with attractive mean-field interaction trapped in harmonic potential in \({\mathbb {R}}^2\)

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We investigate the ground states of spin-1 Bose–Einstein condensate trapped in harmonic potential in \({\mathbb {R}}^2\) with attractive mean-field interaction constant \(c_0\) and spin-exchange interaction constant \(c_1\), two conserved quantities, the number of atoms N and the total magnetization M are involved in. The existence and nonexistence of the ground states have been analyzed according to the relations among \(c_0\), \(c_1\) and M. As \((c_{0}\), \(c_{1})\) approaches the thresholds, the asymptotic behavior of the ground states are presented in details, and the energy estimates, mass concentration and vanishing phenomena are described rigorously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Anderson, M.H., Ensher, J.R., Matthews, M.R., Wieman, C.E., Cornell, E.A.: Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995)

    Article  Google Scholar 

  2. Bao, W.Z., Cai, Y.Y.: Mathematical theory and numerical methods for Bose–Einstein condensation. Kinet. Relat. Models 6(1), 1–135 (2013)

    Article  MathSciNet  Google Scholar 

  3. Bao, W.Z., Cai, Y.Y.: Mathematical models and numerical methods for spinor Bose–Einstein condensates. Commun. Comput. Phys. 24(4), 899–965 (2018)

    Article  MathSciNet  Google Scholar 

  4. Bao, W.Z., Lim, Y.F.: Computing ground states of spin-1 Bose–Einstein condensates by the normalized gradient flow. SIAM J. Sci. Comput. 30(4), 1925–1948 (2008)

    Article  MathSciNet  Google Scholar 

  5. Bradley, C.C., Sackett, C.A., Hulet, R.G.: Bose–Einstein condensation of lithium: observation of limited condensate number. Phys. Rev. Lett. 78(6), 985–989 (1997)

    Article  Google Scholar 

  6. Cao, D.M., Chern, I.-L., Wei, J.C.: On ground state of spinor Bose–Einstein condensates. NoDEA Nonlinear Differ. Equ. Appl. 18(4), 427–445 (2011)

    Article  MathSciNet  Google Scholar 

  7. Chern, I.-L., Chou, C.F., Shieh, T.T.: Ground-state patterns and phase diagram of spin-1 Bose–Einstein condensates in uniform magnetic field. Phys. D 388, 73–86 (2019)

    Article  MathSciNet  Google Scholar 

  8. Davis, K.B., Mewes, M.O., Andrews, M.R., van Druten, N.J., Durfee, D.S., Kurn, D.M., Ketterle, W.: Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75(22), 3969–3973 (1995)

    Article  Google Scholar 

  9. Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, 19, 2nd edn. American Mathematical Society, Providence (2010)

    Google Scholar 

  10. Fanelli, L., Montefusco, E.: On the blow-up threshold for weakly coupled nonlinear Schrödinger equations. J. Phys. A 40(47), 14139–14150 (2007)

    Article  MathSciNet  Google Scholar 

  11. Fang, G.B., Lü, Z.X.: Existence and uniqueness of positive solutions to three coupled nonlinear Schrödinger equations. Acta Math. Appl. Sin. Engl. Ser. 31(4), 1021–1032 (2015)

    Article  MathSciNet  Google Scholar 

  12. Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in \({R}^{N}\). In: Math. Anal. Appl. Part A. Adv. in Math. Suppl. Stud. vol. 7, pp. 369–402 (1981)

  13. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1997)

    MATH  Google Scholar 

  14. Guo, Y.J., Lin, C.S., Wei, J.C.: Local uniqueness and refined spike profiles of ground states for two-dimensional attractive Bose–Einstein condensates. SIAM J. Math. Anal. 49(5), 3671–3715 (2017)

    Article  MathSciNet  Google Scholar 

  15. Guo, Y.J., Li, S., Wei, J.C., Zeng, X.Y.: Ground states of two-component attractive Bose–Einstein condensates I: existence and uniqueness. J. Funct. Anal. 276(1), 183–230 (2019)

    Article  MathSciNet  Google Scholar 

  16. Guo, Y.J., Li, S., Wei, J.C., Zeng, X.Y.: Ground states of two-component attractive Bose–Einstein condensates II: semi-trivial limit behavior. Trans. Am. Math. Soc. 371(10), 6903–6948 (2019)

    Article  MathSciNet  Google Scholar 

  17. Guo, Y.J., Seiringer, R.: On the mass concentration for Bose–Einstein condensates with attractive interactions. Lett. Math. Phys. 104(2), 141–156 (2014)

    Article  MathSciNet  Google Scholar 

  18. Hajaiej, H., Carles, R.: On the spin-1 Bose–Einstein condensates in the presence of Ioffe–Pritchard magnetic field. Commun. Contemp. Math. 18(5), 1550062 (2016)

    Article  MathSciNet  Google Scholar 

  19. Han Q., Lin, F.H.: Elliptic Partial Differential Equations, second edition, Courant Lect. Notes Math., vol. 1, Courant Institute of Mathematical Science/AMS, New York (2011)

  20. Ho, T.-L.: Spinor Bose condensates in optical traps. Phys. Rev. Lett. 81(4), 742–745 (1998)

    Article  Google Scholar 

  21. Kawaguchi, Y., Ueda, M.: Spinor Bose–Einstein condensates. Phys. Rep. 520, 253–381 (2012)

    Article  MathSciNet  Google Scholar 

  22. Kwong, M.K.: Uniqueness of positive solutions of \(\Delta u-u +u^{p}=0\) in \(\mathbb{R}^{N}\). Arch. Ration. Mech. Anal. 105(3), 243–266 (1989)

    Article  Google Scholar 

  23. Lin, L., Chern, I-L.: Bifurcation between 2-component and 3-component ground states of spin-1 Bose-Einstein condensates in uniform magnetic fields. arXiv:1302.0279v1 (2013)

  24. Lin, T.C., Wei, J.C.: Spikes in two coupled nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 22(4), 403–439 (2005)

  25. Lin, T.C., Wei, J.C.: Ground state of N coupled nonlinear Schrödinger equations in \(\mathbb{R}^n, n\le 3\). Commun. Math. Phys. 255(3), 629–653 (2005)

    Article  Google Scholar 

  26. Lin, T.C., Wei, J.C.: Spikes in two-component systems of nonlinear Schrödinger equations with trapping potentials. J. Differ. Equ. 229(2), 538–569 (2006)

    Article  Google Scholar 

  27. Liu, J.Q., Liu, X.Q., Wang, Z.Q.: Sign-changing solutions for coupled nonlinear Schrödinger equations with critical growth. J. Differ. Equ. 261(12), 7194–7236 (2016)

    Article  Google Scholar 

  28. Murata, K., Saito, H., Ueda, M.: Broken-axisymmetry phase of a spin-1 ferromagnetic Bose–Einstein condensate. Phys. Rev. A 75, 013607 (2007)

    Article  Google Scholar 

  29. Ni, W.M., Takagi, I.: On the shape of least-energy solutions to a semilinear Neumann problem. Commun. Pure Appl. Math. 44(7), 819–851 (1991)

    Article  MathSciNet  Google Scholar 

  30. Ohmi, T., Machida, K.: Bose-Einstein condensation with internal degrees of freedom in alkali atom gases. J. Phys. Soc. Japan 67, 1822–1825 (1998)

    Article  Google Scholar 

  31. Peng, S.J., Peng, T.F., Wang, Z.Q.: On elliptic systems with Sobolev critical growth. Calc. Var. Part. Differ. Equ. 55(6), Art. 142, 30 pp (2016)

  32. Peng, S.J., Wang, Q.F., Wang, Z.Q.: On coupled nonlinear Schrödinger systems with mixed couplings. Trans. Am. Math. Soc. 371(11), 7559–7583 (2019)

    Article  Google Scholar 

  33. Ruprecht, P.A., Holland, M.J., Burnett, K., Edwards, M.: Time-dependent solution of the nonlinear Schrödinger equation for Bose-condensed trapped neutral atoms. Phys. Rev. A 51(6), 4704–4711 (1995)

    Article  Google Scholar 

  34. Sadler, L.E., Higbie, J.M., Leslie, S.R., Vengalattore, M., Stamper-Kurn, D.M.: Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose–Einstein condensate. Nature 443, 312–315 (2006)

    Article  Google Scholar 

  35. Saito, H., Kawaguchi, Y., Ueda, M.: Breaking of chiral symmetry and spontaneous rotation in a spinor Bose–Einstein condensate. Phys. Rev. Lett. 96, 065302 (2006)

    Article  Google Scholar 

  36. Stamper-Kurn, D.M., Andrews, M.R., Chikkatur, A.P., Inouye, S., Miesner, H.-J., Stenger, J., Ketterle, W.: Optical confinement of a Bose–Einstein condensate. Phys. Rev. Lett. 80(10), 2027–2030 (1998)

    Article  Google Scholar 

  37. Stenger, J., Inouye, S., Stamper-Kurn, D.M., Miesner, H.J., Chikkatur, A.P., Ketterle, W.: Spin domains in ground-state Bose–Einstein condensates. Nature 396, 345–348 (1998)

    Article  Google Scholar 

  38. Struwe, M.: Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems, 4th edn, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge/A Series of Modern Surveys in Mathematics. Springer, Berlin (2008)

  39. Wang, Q.X., Zhao, D.: Existence and mass concentration of 2D attractive Bose–Einstein condensates with periodic potentials. J. Differ. Equ. 262(3), 2684–2704 (2017)

    Article  MathSciNet  Google Scholar 

  40. Wei, J.C.: On the construction of single-peaked solutions to a singularly perturbed semilinear Dirichlet problem. J. Differ. Equ. 129(2), 315–333 (1996)

    Article  MathSciNet  Google Scholar 

  41. Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)

    Book  Google Scholar 

  42. Zhang, Z.T., Luo, H.J.: Symmetry and asymptotic behavior of ground state solutions for Schrödinger systems with linear interaction. Commun. Pure Appl. Anal. 17(3), 787–806 (2018)

    Article  MathSciNet  Google Scholar 

  43. Zhao, D., Song, S.W., Wen, L., Li, Z.D., Luo, H.G., Liu, W.M.: Topological defects and inhomogeneous spin patterns induced by the quadratic Zeeman effect in spin-1 Bose–Einstein condensates. Phys. Rev. A 91, 013619 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dun Zhao.

Additional information

Communicated by M. Struwe.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by NSFC under the Grant Nos. 12075102, 11971212 and 11801519.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, Y., Wang, Q. & Zhao, D. Ground states of spin-1 BEC with attractive mean-field interaction trapped in harmonic potential in \({\mathbb {R}}^2\). Calc. Var. 60, 152 (2021). https://doi.org/10.1007/s00526-021-02015-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02015-4

Mathematics Subject Classification

Navigation