Skip to main content
Log in

On the long-time behavior of immortal Ricci flows

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

For an immortal Ricci flow on an m-dimensional \((m\ge 3)\) closed manifold, we show the following convergence results: (1) if the curvature and diameter are uniformly bounded, then any unbounded sequence of time slices sub-converges to a Riemannian orbifold; (2) if the flow is type-III with diameter growth controlled by \(t^{\frac{1}{2}}\), then any blowdown limit is an m-dimensional negative Einstein manifold, provided that Feldman–Ilmanen–Ni’s \(\varvec{\mu }_+\)-functional satisfies \(\lim _{t\rightarrow \infty } t\varvec{\mu }_+'(t)=0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. Preprint, arXiv: math/0211159

  2. Hamilton, R.: Formation of singularities in the Ricci flow. Surv. Differ. Geom. 2, 7–136 (1995)

    Article  MathSciNet  Google Scholar 

  3. Hamilton, R.: Non-singular solutions of the Ricci flow on three-manifolds. Commun. Anal. Geom. 7, 695–729 (1999)

    Article  MathSciNet  Google Scholar 

  4. Perelman, G.: Ricci flow with surgery on three-manifolds. Preprint, arXiv: math/0303109

  5. Huang, S.: Notes on Ricci flows with collapsing initial data (I): Distance distortion. Preprint, arXiv: 1809.07394

  6. Lott, J.: Dimensional reduction and the long-time behavior of Ricci flow. Comment. Math. Helv. 85, 485–534 (2010)

    Article  MathSciNet  Google Scholar 

  7. Richard, H.: Bamler, Long-time behavior of 3-dimensional Ricci flow: introduction. Geom. Topol. 22, 757–774 (2018)

    Article  MathSciNet  Google Scholar 

  8. Böhm, C., Lafuente, R.A.: Immortal homogeneous Ricci flows. Invent. Math. 212(2), 461–529 (2018)

    Article  MathSciNet  Google Scholar 

  9. Böhm, C.: On the long time behavior of homogeneous Ricci flows. Comment. Math. Helv. 90(3), 543–571 (2015)

    Article  MathSciNet  Google Scholar 

  10. Böhm, C., Lafuente, R.A., Simon, M.: Optimal curvature estimates for homogeneous Ricci flows. Int. Math. Res. Not. rnx256, https://doi.org/10.1093/imrn/rnx256

  11. Cheeger, J., Gromov, M., Taylor, M.: Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds. J. Differential Geom. 17(1), 15–53 (1982)

    Article  MathSciNet  Google Scholar 

  12. Hamilton, R.: A compactness property for solutions of the Ricci flow. Am. J. Math. 117, 545–572 (1995)

    Article  MathSciNet  Google Scholar 

  13. Feldman, M., Ilmanen, T., Ni, L.: Entropy and reduced distance for Ricci expanders. J. Geom. Anal. 15(1), 49–62 (2005)

    Article  MathSciNet  Google Scholar 

  14. Fukaya, K.: Collapsing Riemannian manifolds to ones with lower dimension II. J. Math. Soc. Jpn. 41, 333–356 (1989)

    Article  MathSciNet  Google Scholar 

  15. Cheeger, J., Gromov, M.: Collapsing Riemannian manifolds while keeping their curvature bounded I. J. Differ. Geom. 23(3), 309–346 (1986)

    Article  MathSciNet  Google Scholar 

  16. Cheeger, J., Gromov, M.: Collapsing Riemannian manifolds while keeping their curvature bounded II. J. Differ. Geom. 32(1), 269–298 (1990)

    MathSciNet  MATH  Google Scholar 

  17. Lott, J.: On the long-time behavior of type-III Ricci flow solutions. Math. Ann. 339, 627–666 (2007)

    Article  MathSciNet  Google Scholar 

  18. Huang, S.: \(\varepsilon \)-Regularity and structure of four dimensional shrinking Ricci solitons. Int. Math. Res. Not. rny069, https://doi.org/10.1093/imrn/rny069

  19. Rong, X.: A Bochner theorem and applications. Duke Math. J. 91(2), 381–392 (1998)

    Article  MathSciNet  Google Scholar 

  20. Lott, J.: The collapsing geometry of Ricci-flat 4-manifolds. Comment. Math. Helv. 95(1), 79–98 (2020)

    Article  MathSciNet  Google Scholar 

  21. Naber, A., Tian, G.: Geometric structures of collapsing Riemannian manifolds II. J. Reine Angew. Math. 744, 103–132 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Huang, S., Rong, X., Wang, B.: Collapsing geometry with Ricci curvature bounded below and Ricci flow smoothing. Preprint, arXiv: 2008.12419

  23. Cheeger, J., Fukaya, K., Gromov, M.: Nilpotent structures and invariant metrics on collapsed manifolds. J. Am. Math. Soc. 5, 327–372 (1992)

    Article  MathSciNet  Google Scholar 

  24. Fukaya, K.: Collapsing of Riemannian manifolds and eigenvalues of Laplace operator. Invent. Math. 87, 517–547 (1987)

    Article  MathSciNet  Google Scholar 

  25. Shi, W.-X.: Deforming the metric on complete Riemannian manifolds. J. Differ. Geom. 30(1), 223–301 (1989)

    MathSciNet  MATH  Google Scholar 

  26. Gromov, M.: Structures métriques pour les variétés Riemanniennes. Editions Cedic, Paris (1981)

    MATH  Google Scholar 

  27. Fukaya, K.: A boundary of the set of the Riemannian manifolds with bounded curvatures and diameters. J. Differ. Geom. 28, 1–21 (1988)

    MathSciNet  MATH  Google Scholar 

  28. Cheeger, J., Rong, X.: Existence of polarized F-structures on collapsed manifolds with bounded curvature and diameter. Geom. Funct. Anal. 6(3), 411–429 (1996)

    Article  MathSciNet  Google Scholar 

  29. Gallego, E., Gualandri, L., Hector, G., Reventós, A.: Groupoïdes Riemanniens. Publ. Mat. 33(3), 417–422 (1989)

    Article  MathSciNet  Google Scholar 

  30. Hoyo, M., Fernandes, R.L.: Riemannian metrics on Lie groupoids. J. Reine Angew. Math. 735, 143–173 (2018)

    Article  MathSciNet  Google Scholar 

  31. Molino, P.: Riemannian foliations. Translated from the French by Grant Cairns. With appendices by G. Cairns, Y. Carrière, É. Ghys, E. Salem and V. Sergiescu. Progress in Mathematics, 73. Birkhäuser Boston, Inc., Boston, MA,. xii+339 pp. (1988) ISBN: 0-8176-3370-7

  32. Gorokhovsky, A., Lott, J.: The index of a transverse Dirac-type operator: the case of abelian Molino sheaf. J. Reine. Angew. Math. 678, 125–162 (2013)

    MathSciNet  MATH  Google Scholar 

  33. Hilaire, C.: Ricci flow on Riemannian groupoids. Preprint, arXiv: 1411.6058

  34. Naber, A., Tian, G.: Geometric structures of collapsing Riemannian manifolds I. Surveys in geometric analysis and relativity, 439–466, Adv. Lect. Math. (ALM), 20, Int. Press, Somerville, MA (2011)

  35. Lott, J.: Some geometric properties of the Bakry-Émery-Ricci tensor. Comment. Math. Helv. 78, 865–883 (2003)

    Article  MathSciNet  Google Scholar 

  36. Milnor, J.: Curvature of left invariant metrics on Lie groups. Adv. Math. 21, 293–329 (1976)

    Article  MathSciNet  Google Scholar 

  37. Cao, J., Cheeger, J., Rong, X.: Splitting and Cr-structures for manifolds with nonpositive sectional curvature. Invent. Math. 144(1), 139–167 (2001)

    Article  MathSciNet  Google Scholar 

  38. Fukaya, K.: Collapsing Riemannian manifolds to ones of lower dimensions. J. Differ. Geom. 25, 139–156 (1987)

    MathSciNet  MATH  Google Scholar 

  39. Ruh, E.A.: Almost flat manifolds. J. Differ. Geom. 17, 1–14 (1982)

    MathSciNet  MATH  Google Scholar 

  40. Zhang, Q.S.: Some gradient estimates for the heat kernel equation on domains and for an equation by Perelman. Int. Math. Res. Not. Art. ID 92314, 39 pp (2006)

  41. Gromov, M.: Almost flat manifolds. J. Differ. Geom. 13(2), 231–241 (1978)

    MathSciNet  MATH  Google Scholar 

  42. Buser, P., Karcher, H.: Gromov’s almost flat manifolds. Astérisque, 81. Société Mathématique de France, Paris, 148 pp (1981)

  43. Oscar, S.: Rothaus, Logarithmic Sobolev inequalities and the spectrum of Schrödinger operators. J. Funct. Anal. 42, 110–120 (1981)

    Article  Google Scholar 

  44. Cheng, S.Y., Yau, S.-T.: Differential equations on Riemannian manifolds and their geometric applications. Commun. Pure Appl. Math. 28, 333–354 (1975)

    Article  MathSciNet  Google Scholar 

  45. Besse, A.L.: Einstein manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Springer, Berlin, xii+510 pp. ISBN: 3-540-15279-2 (1987)

  46. O’Neill, B.: The fundamental equations of a submersion. Michigan Math. J. 13, 459–469 (1966)

    MathSciNet  MATH  Google Scholar 

  47. Gromov, M.: Manifolds of negative curvature. J. Differ. Geom. 13(2), 223–230 (1978)

    MathSciNet  MATH  Google Scholar 

  48. Dai, X., Wei, G., Ye, R.: Smoothing Riemannian metrics with Ricci curvature bounds. Manuscripta Math. 90, 49–61 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank Yu Li, Xiaochun Rong, Bing Wang and Ruobing Zhang for useful discussions during the preparation of the paper. I would also like to thank Richard Bamler, John Lott, Aaron Naber and Song Sun for helpful comments on the non-collapsing and Ricci flatness of the long-time limits by the evolution of immortal Ricci flows with uniformly bounded curvature and diameter, as well as on the case of comapct type-III Ricci flows. Finally, I would like to thank an anonymous referee for valuable comments on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaosai Huang.

Additional information

Communicated by A. Chang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S. On the long-time behavior of immortal Ricci flows. Calc. Var. 60, 78 (2021). https://doi.org/10.1007/s00526-021-01941-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-01941-7

Mathematics Subject Classification

Navigation