Skip to main content
Log in

Busemann functions on the Wasserstein space

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study rays and co-rays in the Wasserstein space \(P_p({\mathcal {X}})\) (\(p > 1\)) whose ambient space \({\mathcal {X}}\) is a complete, separable, non-compact, locally compact length space. We show that rays in the Wasserstein space can be represented as probability measures concentrated on the set of rays in the ambient space. We show the existence of co-rays for any prescribed initial probability measure. We introduce Busemann functions on the Wasserstein space and show that co-rays are negative gradient lines in some sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Feng, J.: On a class of first order Hamilton–Jacobi equations in metric spaces. J. Differ. Equ. 256(7), 2194–2245 (2014)

    Article  MathSciNet  Google Scholar 

  2. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows: In Metric Spaces and in the Space of Probability Measures. Springer, New York (2008)

    MATH  Google Scholar 

  3. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. Int. Conf. Mach. Learn. 214–223, (2017)

  4. Bangert, V.: Geodesic rays, Busemann functions and monotone twist maps. Calc. Var. Partial. Differ. Equ. 2(1), 49–63 (1994)

    Article  MathSciNet  Google Scholar 

  5. Bangert, V., Emmerich, P.: Area growth and rigidity of surfaces without conjugate points. J. Differ. Geom. 94(3), 367–385 (2013)

    Article  MathSciNet  Google Scholar 

  6. Bangert, V., Gutkin, E.: Insecurity for compact surfaces of positive genus. Geom. Dedicata. 146(1), 165–191 (2010)

    Article  MathSciNet  Google Scholar 

  7. Beem, J.K.: Global Lorentzian Geometry. Routledge, London (2017)

    Book  Google Scholar 

  8. Bertrand, J., Kloeckner, B.: A geometric study of Wasserstein spaces: Hadamard spaces. J. Topol. Anal. 4(04), 515–542 (2012)

    Article  MathSciNet  Google Scholar 

  9. Billingsley, P.: Convergence of Probability Measures. Wiley, Hoboken (2013)

    MATH  Google Scholar 

  10. Burago, D., Burago, Y., Ivanov, S.: A course in metric geometry, Vol. 33. American Mathematical Soc. (2001)

  11. Busemann, H.: The Geometry of Geodesics. Academic Press, New York (1955)

    MATH  Google Scholar 

  12. Carmona, R., Delarue, F.: Probabilistic analysis of mean-field games. SIAM J. Control Optim. 51(4), 2705–2734 (2013)

    Article  MathSciNet  Google Scholar 

  13. Cheeger, J., Gromoll, D.: The splitting theorem for manifolds of nonnegative Ricci curvature. J. Differ. Geom. 6(1), 119–128 (1971)

    Article  MathSciNet  Google Scholar 

  14. Cui, X.: Viscosity solutions, ends and ideal boundaries. Ill. J. Math. 60(2), 459–480 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Cui, X., Cheng, J.: Busemann functions and barrier functions. Acta Applicandae Mathematicae (2017)

  16. de Acosta, A.: Invariance principles in probability for triangular arrays of B-valued random vectors and some applications. Ann. Probab. 346–373, (1982)

  17. Galloway, G., Horta, A.: Regularity of Lorentzian Busemann functions. Trans. Am. Math. Soc. 348(5), 2063–2084 (1996)

    Article  MathSciNet  Google Scholar 

  18. Gangbo, W., Nguyen, T., Tudorascu, A.: Hamilton–Jacobi equations in the Wasserstein space. Methods Appl. Anal. 15(2), 155–184 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Innami, N.: Differentiability of Busemann functions and total excess. Math. Z. 180(3), 235–247 (1982)

    Article  MathSciNet  Google Scholar 

  20. Jin, L., Cui, X.: Global viscosity solutions for eikonal equations on class A Lorentzian 2-tori. Geom. Dedicata. 193(1), 155–192 (2018)

    Article  MathSciNet  Google Scholar 

  21. Lisini, S.: Characterization of absolutely continuous curves in Wasserstein spaces. Calc. Var. Partial. Differ. Equ. 28(1), 85–120 (2007)

    Article  MathSciNet  Google Scholar 

  22. Papadopoulos, A.: Metric spaces, convexity and nonpositive curvature, Vol. 6. European Mathematical Society, (2005)

  23. Petersen, P.: Riemannian Geometry, vol. 171. Springer, New York (2006)

    Book  Google Scholar 

  24. Santambrogio, F.: Optimal Transport for Applied Mathematicians, pp. 58–63. Birkäuser, New York (2015)

    Book  Google Scholar 

  25. Shiohama, K.: Topology of complete noncompact manifolds. Geometry of geodesics and related topics. Adv. Stud. Pure Math. 3, 423–450 (1984)

    Article  MathSciNet  Google Scholar 

  26. Sormani, C.: Busemann functions on manifolds with lower Ricci curvature bounds and minimal volume growth. J. Differ. Geom. 48, 557–585 (1998)

    Article  MathSciNet  Google Scholar 

  27. Sormani, C.: The almost rigidity of manifolds with lower bounds on Ricci curvature and minimal volume growth. Commun. Anal. Geom. 8(1), 159–212 (2000)

    Article  MathSciNet  Google Scholar 

  28. Villani, C.: Optimal Transport: Old and New, vol. 338. Springer, New York (2008)

    MATH  Google Scholar 

  29. Whitt, W.: Weak convergence of probability measures on the function space \(C[0,\infty )\). Ann. Math. Stat. 41(3), 939–944 (1970)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referee for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Cui.

Additional information

Communicated by A. Malchiodi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The third author is supported by the National Natural Science Foundation of China (Grants 11631006, 11790272, 11571166). The Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and the Fundamental Research Funds for the Central Universities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, G., Li, WL. & Cui, X. Busemann functions on the Wasserstein space. Calc. Var. 60, 97 (2021). https://doi.org/10.1007/s00526-021-01937-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-01937-3

Mathematics Subject Classification

Navigation