Skip to main content
Log in

Convergence rates for linear elasticity systems on perforated domains

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In the present work, we established almost-sharp error estimates for linear elasticity systems in periodically perforated domains. The first result was \(L^{\frac{2d}{d-1-\tau }}\)-error estimates \(O\big (\varepsilon ^{1-\frac{\tau }{2}}\big )\) for all \(\tau \in (0,1)\) in a bounded smooth domain, which is new even for homogenization problems on unperforated domains. It followed from weighted Hardy–Sobolev’s inequalities (given by Lehrbäck and Vähäkangas in J Funct Anal 271(2):330–364, 2016) and a suboptimal error estimate for the square function of the first-order approximating corrector (earliest investigated by Kenig et al. in Arch Ration Mech Anal 203(3):1009–1036, 2012) under additional regularity assumption on coefficient). The new approach relied on the weighted quenched Calderón–Zygmund estimate (initially appeared in Gloria et al. work Milan J Math 88(1):99–170, 2020 for a quantitative stochastic homogenization theory). The second effort was \(L^2\)-error estimates \(O\big (\varepsilon ^{\frac{5}{6}} \ln ^{\frac{2}{3}}(1/\varepsilon )\big )\) for a Lipschitz domain, followed from a duality scheme coupled with interpolation inequalities. Also, we developed a new weighted extension theorem and local-type Sobolev–Poincaré inequalities on perforated domains. Throughout the paper, we do not impose any smoothness assumption on the coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi, E., Piat, V., Dal Maso, G., Percivale, D.: An extension theorem from connected sets, and homogenization in general periodic domains. Nonlinear Anal. 18(5), 481–496 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23(6), 1482–1518 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Armstrong, S., Daniel, J.-P.: Calderón-Zygmund estimates for stochastic homogenization. J. Funct. Anal. 270(1), 312–329 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Armstrong, S., Kuusi, T., Mourrat, J.-C.: The additive structure of elliptic homogenization. Invent. Math. 208(3), 999–1154 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Armstrong, S., Kuusi, T., Mourrat, J.-C.: Quantitative Stochastic Homogenization and Large-scale Regularity. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 352. Springer, Cham (2019)

  6. Armstrong, S., Mourrat, J.-C.: Lipschitz regularity for elliptic equations with random coefficients. Arch. Ration. Mech. Anal. 219(1), 255–348 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Armstrong, S., Smart, C.: Quantitative stochastic homogenization of convex integral functionals. Ann. Sci. Éc. Norm. Supér. 49, 423–481 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Armstrong, S., Shen, Z.: Lipschitz estimates in almost-periodic homogenization. Commun. Pure Appl. Math. 69(10), 1882–1923 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Avellaneda, M., Lin, F.: Compactness methods in the theory of homogenization. Commun. Pure Appl. Math. 40, 803–847 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 343. Springer, Heidelberg (2011)

  11. Boyer, F., Fabrie, P.: Mathematical Tools for the Study of the Incompressible Navier–Stokes Equations and Related Models. Applied Mathematical Sciences, p. 183. Springer, New York (2013)

    MATH  Google Scholar 

  12. Brown, R.: The mixed problem for Laplace’s equation in a class of Lipschitz domains. Commun. Partial Differ. Equ. 19(7–8), 1217–1233 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Byun, S.-S., Wang, L.: Elliptic equations with BMO coefficients in Reifenberg domains. Commun. Pure Appl. Math. 57(10), 1283–1310 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Caffarelli, L., Peral, I.: On \(W^{1, p}\) estimates for elliptic equations in divergence form. Commun. Pure Appl. Math. 51, 1–21 (1998)

    Article  MATH  Google Scholar 

  15. Chua, S.-K.: Extension theorems on weighted Sobolev spaces. Indiana Univ. Math. J. 41(4), 1027–1076 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cioranescu, D., Damlamian, A., Griso, G.: The Periodic Unfolding Method. Theory and Applications to Partial Differential Problems. Series in Contemporary Mathematics, vol. 3. Springer, Singapore (2018)

    MATH  Google Scholar 

  17. Cioranescu, D., Paulin, J.: Homogenization in open sets with holes. J. Math. Anal. Appl. 71(2), 590–607 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dahlberg, B., Kenig, C., Verchota, G.: Boundary value problems for the systems of elastostatics in Lipschitz domains. Duke Math. J. 57(3), 795–818 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. Duoandikoetxea, J.: Fourier Analysis, Translated and Revised from the 1995 Spanish Original by David Cruz-Uribe, Graduate Studies in Mathematics, 29. American Mathematical Society, Providence, RI (2001)

    MATH  Google Scholar 

  20. Duerinckx, M., Otto, F.: Higher-order pathwise theory of flucuations in stochastic homogenization. Stoch PDE Anal. Comp. 8(3), 625–692 (2020)

    Article  MATH  Google Scholar 

  21. Duran, R.-G., Sanmartino, M., Toschi, M.: Weighted a priori estimates for the Poisson equation. Indiana Univ. Math. J. 57(7), 3463–3478 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Evans, L., Gariepy, R.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (2015)

    Book  MATH  Google Scholar 

  23. Fefferman, C., Stein, E.: \(H^p\) spaces of several variables. Acta Math. 129(3–4), 137–193 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gloria, A., Otto, F.: The corrector in stochastic homogenization: optimal rates, stochastic integrability, and fluctuations. arXiv:1510.08290v3 (2016)

  25. Gloria, A., Neukamm, S., Otto, F.: A regularity theory for random elliptic operators. Milan J. Math. 88(1), 99–170 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Giunti, A., Höfer, R.M., Velázquez, Juan J.L.: Homogenization for the Poisson equation in randomly perforated domains under minimal assumptions on the size of the holes. Commun. Partial Differ. Equ. 43(9), 1377–1412 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Geng, J., Shen, Z., Song, L.: Boundary Korn inequality and Neumann problems in homogenization of systems of elasticity. Arch. Ration. Mech. Anal. 224(3), 1205–1236 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Geng, J., Shen, Z., Song, L.: Uniform \(W^{1, p}\) estimates for systems of linear elasticity in a periodic medium. J. Funct. Anal. 262(4), 1742–1758 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jikov, V., Kozlov, S., Oleinik, O.: Homogenization of Differential Operators and Integral Functionals. (English summary) Translated from the Russian by G. A. Yosifian [G.A. Iosif’yan]. Springer, Berlin (1994)

  31. Jing, W.: A unified homogenization approach for the Dirichlet problem in perforated domains. SIAM J. Math. Anal. 52(2), 1192–1220 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Josien, M., Otto, F.: The annealed Calderón–Zygmund estimates as convenient tool in quantitative schochastic homogenization. arXiv:2005.08811v1 (2020)

  33. Kenig, C., Lin, F., Shen, Z.: Convergence rates in \(L^{2}\) for elliptic homogenization problems. Arch. Ration. Mech. Anal. 203(3), 1009–1036 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kenig, C., Lin, F., Shen, Z.: Homogenization of elliptic systems with Neumann boundary conditions. J. Am. Math. Soc. 26(4), 901–937 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kenig, C., Shen, Z.: Layer potential methods for elliptic homogenization problems. Commun. Pure Appl. Math. 64(1), 1–44 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lehrbäck, J.: Weighted Hardy inequalities beyond Lipschitz domains. Proc. Am. Math. Soc. 142(5), 1705–1715 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lehrbäck, J., Vähäkangas, A.: In between the inequalities of Sobolev and Hardy. J. Funct. Anal. 271(2), 330–364 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lunardi, A.: Interpolation Theory, Third edition. Appunti. Scuola Normale Superiore di Pisa (Nuova Serie), 16. Edizioni della Normale, Pisa (2018)

  39. Necas, J.: Sur une methode pour resoudre les equations aux drives partielles du type elliptique, voisine de la variationnelle. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 16, 305–326 (1962) (French)

  40. Oleinik, O., Shamaev, A., Yosifian, G.: Mathematical Problems in Elasticity and Homogenization. Studies in Mathematics and its Applications, vol. 26. North-Holland Publishing Co., Amsterdam (1992)

    MATH  Google Scholar 

  41. Russell, B.: Homogenization in perforated domains and interior Lipschitz estimates. J. Differ. Equ. 263(6), 3396–3418 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Shen, Z.: Periodic Homogenization of Elliptic Systems. Operator Theory: Advances and Applications. Advances in Partial Differential Equations (Basel), vol. 269. Birkhuser/Springer, Cham (2018)

    Book  Google Scholar 

  43. Shen, Z.: Boundary estimates in elliptic homogenization. Anal. PDE 10, 653–694 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Shen, Z.: Weighted \(L^2\) estimates for elliptic homogenization in Lipschitz domains. arXiv:2004.03087v1 (2020)

  45. Shen, Z.: Bounds of Riesz transforms on \(L^p\) spaces for second order elliptic operators. Ann. Inst. Fourier (Grenoble) 55, 173–197 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  46. Shen, Z., Zhuge, J.: Boundary layers in periodic homogenization of Neumann problems. Commun. Pure Appl. Math. 71(11), 2163–2219 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  47. Shen, Z., Zhuge, J.: Convergence rates in periodic homogenization of systems of elasticity. Proc. Am. Math. Soc. 145(3), 1187–1202 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  48. Shen, Z., Zhuge, J.: Approximate correctors and convergence rates in almost-periodic homogenization. J. Math. Pures Appl. 110, 187–238 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  49. Stein, E.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  50. Suslina, T.: Homogenization of the Neumann problem for elliptic systems with periodic coefficients (English summary). SIAM J. Math. Anal. 45(6), 3453–3493 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  51. Suslina, T.: Homogenization of the Dirichlet problem for elliptic systems: \(L^2\)-operator error estimates. Mathematika 59(2), 463–476 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  52. Wang, L., Xu, Q., Zhao, P.: Quantitative estimates for homogenization of nonlinear elliptic operators in perforated domains. arXiv:2001.06317v2 (2020)

  53. Xu, Q.: Convergence rates for general elliptic homogenization problems in Lipschitz domains. SIAM J. Math. Anal. 48(6), 3742–3788 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  54. Xu, Q.: Uniform regularity estimates in homogenization theory of elliptic systems with lower order terms on the Neumann boundary problem. J. Differ. Equ. 261(8), 4368–4423 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhikov, V., Rychago, M.: Homogenization of nonlinear elliptic equations of the second order in perforated domains. Izv. Ross. Akad. Nauk. Ser. Mat. 61, 69–89 (1997)

    MATH  Google Scholar 

Download references

Acknowledgements

Some referees had read the previous version (arXiv:2001.06874v1) and kindly pointed out a fatal mistake therein. We also appreciate the referee for the valuable comments and suggestions. The first author acknowledged the hospitality when she visited the Max Planck Institute for Mathematics in the Sciences in the winter of 2019. The second author deeply appreciated Prof. Felix Otto and his lectures, as well as financial support in CIMI (Toulouse), for the source of the idea of Theorem 1.5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by F.-H. Lin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research was supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11901262), and supported by the Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2019-21)

Appendix

Appendix

Lemma 8.1

(Caccioppoli’s inequality with nonvanishing boundary data) Let \(\varOmega \) be a Lipschitz domain and \(0<r\le 1\). Suppose \({\mathcal {L}}\) is an elliptic operator with a constant coefficient and satisfies the condition (1.4). Let v be the solution to \({\mathcal {L}}(v) = 0\) in \(D_{2r}\) and \(v = g\) on \(\varDelta _{2r}\) with \(g\in H^1(\varDelta _{2r};{\mathbb {R}}^d)\). Then we have

$$\begin{aligned} \Big (\fint _{D_r}|\nabla v|^2dx\Big )^{1/2} \lesssim \frac{1}{r}\bigg \{\Big (\fint _{D_{2r}}|v|^2dx\Big )^{1/2} + \Big (\fint _{\varDelta _{2r}}|g|^2dS\Big )^{1/2} \bigg \} + \Big (\fint _{\varDelta _{2r}} |\nabla _{tan }g|^2dS\Big )^{1/2}, \end{aligned}$$
(8.1)

where the constant depends on \(\mu _0,\mu _1,d\) and the boundary character of \(\varOmega \).

Proof

By rescaling argument it is fine to assume \(r=1\). Let \({\tilde{g}}\) be the extension of g such that \({\tilde{g}} = g\) on \(\varDelta _{2}\) with \({\tilde{g}}\in H_0^1(\varDelta _3)\), and \(\Vert {\tilde{g}}\Vert _{H^1(\partial D_3)}\lesssim \Vert g\Vert _{H^1(\varDelta _{2})}\). Then we construct an auxiliary function G satisfying

$$\begin{aligned} {\mathcal {L}}(G) = 0 \quad \text {in} \quad D_3, \qquad G={\tilde{g}} \quad \text {on}\quad \partial D_3. \end{aligned}$$

Then there holds

$$\begin{aligned} \begin{aligned}&\Vert G\Vert _{L^2(D_3)} \lesssim \Vert \nabla G\Vert _{L^2(D_3)} \lesssim \Vert {\tilde{g}}\Vert _{H^{1/2}(\partial D_3)} \lesssim \Vert {\tilde{g}}\Vert _{H^1(\partial D_3)} \lesssim \Vert g\Vert _{H^1(\varDelta _2)}, \end{aligned} \end{aligned}$$
(8.2)

where we use the fact that \(G = 0\) on \(\partial D_3{\setminus }\varDelta _3\) in the first inequality. Let \(w = v-G\), and then \({\mathcal {L}}(w) = 0\) in \(D_2\) and \(w=0\) on \(\varDelta _2\), it follows from the estimate similar to (7.1) that

$$\begin{aligned} \Vert \nabla w\Vert _{L^2(D_1)} \lesssim \Vert w\Vert _{L^2(D_2)}, \end{aligned}$$

and therefore we have

$$\begin{aligned} \begin{aligned} \Vert \nabla v\Vert _{L^2(D_1)}&\le \Vert \nabla w\Vert _{L^2(D_1)} + \Vert \nabla G\Vert _{L^2(D_3)} \\&\lesssim \Vert w\Vert _{L^2(D_2)} + \Vert \nabla G\Vert _{L^2(D_3)} \lesssim \Vert v\Vert _{L^2(D_2)} + \Vert g\Vert _{H^1(\varDelta _2)}, \end{aligned} \end{aligned}$$

where we use the estimate (8.2) in the last step. Then, by rescaling back, there holds the desired estimate (8.1) and we have completed the proof. \(\square \)

Theorem 8.1

(weighted \(W^{1,2}\) estimates for mixed boundary conditions) Let \(\omega _{\sigma }=\delta _{\varOmega }^{\sigma }\) with \(\delta _{\varOmega }(x)=dist (x,\partial \varOmega )\), \(\sigma \in (-1,1).\) Assume that \(\varOmega \) is a bounded Lipschitz domain, and \(\partial \varOmega =(\partial \varOmega )_D\cup (\partial \varOmega )_N\) with \((\partial \varOmega )_D\cap (\partial \varOmega )_N=\emptyset \) satisfies the same geometry conditions as in [12, Theorem 1.5]. Suppose that \({\bar{a}}\) is a constant coefficient matrix satisfying the ellipticity and symmetry conditions (1.4). Let u be associated with f by

$$\begin{aligned} \left\{ \begin{aligned} \nabla \cdot {\bar{a}}\nabla u&= \nabla \cdot f&\quad&in ~~\varOmega ,\\ \partial u/\partial \nu&= -n\cdot f&\quad&on ~~ (\partial \varOmega )_N,\\ u&= 0&\quad&on ~~ (\partial \varOmega )_D, \end{aligned}\right. \end{aligned}$$
(8.3)

in which \(\partial u/\partial \nu :=n\cdot {\bar{a}}\nabla u\) is the conormal derivative of u. Then, there holds the weighted estimate

$$\begin{aligned} \Big (\int _{\varOmega }|\nabla u|^2\omega _{\sigma } dx\Big )^{1/2} \lesssim \Big (\int _{\varOmega }|f|^2\omega _{\sigma } dx\Big )^{1/2}, \end{aligned}$$
(8.4)

where the up to constant depends on \(\mu _0, \mu _1, p, d\) and the boundary character of \(\varOmega \).

Proof

The main idea is actually parallel to that given for Theorem 1.4, and for simplicity, we employ a new scheme of shen’s recent work [44] as we have mentioned in Remark 6.1. We just give the proof in the case of \(\sigma \in (-1,0)\), while the other case follows from the duality argument.

Let \(B=B(x_0,r)\) with \(4B\subset \varOmega \) or \(x_0\in \partial \varOmega \), \(D_{4r}=4B\cap \varOmega \). For the ease of the statement, we impose the following notations: \(\varDelta _{4r}^N:=(\partial \varOmega )_N\cap \partial D_{4r}\), \(\varDelta _{4r}^D:=(\partial \varOmega )_D \cap \partial D_{4r}\). The whole proof is divided into two parts.

Step 1. We will show that there exists \(p>2\) such that

$$\begin{aligned} \Big (\fint _{D_{r}}|\nabla u|^p\omega _{\sigma }^{p/2}dx\Big )^{1/p} \lesssim \fint _{D_{2r}}|\nabla u|\omega _{\sigma }^{1/2}dx, \end{aligned}$$
(8.5)

provided u satisfies \(\nabla \cdot {\bar{a}}\nabla u = 0\) in \(D_{4r}\), and \(\partial u/\partial \nu = 0\) on \(\varDelta _{4r}^N\) with \(u = 0\) on \(\varDelta _{4r}^D\). Based upon the Rellich’s estimate [12, Theorem 1.5] (we remark that the Rellich’s estimate comes from Rellich’s identity, which is still valid for elliptic systems with symmetry coefficients), for \(t\in (1,2)\), one may derive that

$$\begin{aligned} \begin{aligned} \Big (\int _{\partial D_{tr}} |(\nabla u)^{*}|^{2}dS\Big )^{1/2}&\lesssim \Big (\int _{\partial D_{tr}{\setminus }\varDelta _{4r}} |\nabla u|^{2}dS\Big )^{1/2} +\Big (\int _{\varDelta _{tr}^D} |\nabla _{\text {tan}} u|^{2}dS\Big )^{1/2} \\&\quad +\Big (\int _{\varDelta _{tr}^N} \Big |\frac{\partial u}{\partial \nu }\Big |^2 dS\Big )^{1/2}\\&\lesssim \Big (\int _{\partial D_{tr}{\setminus }\varDelta _{4r}} |\nabla u|^{2}dS\Big )^{1/2}, \end{aligned} \end{aligned}$$
(8.6)

where the last inequality is due to the assumptions on the boundary data. Then, by squaring and integrating both sides of (8.6) with respect to \(t\in (1,2)\), we obtain

$$\begin{aligned} \int _{\varDelta _{r}}|(\nabla u)^*|^{2}dS \lesssim \frac{1}{r}\int _{D_{2r}} |\nabla u|^{2}dx. \end{aligned}$$
(8.7)

Hence, we have

$$\begin{aligned} \begin{aligned} \fint _{D_r}|\nabla u|^2\omega _{\sigma }dx&\lesssim r^{1+\sigma -d}\int _{\varDelta _r}|(\nabla u)^*|^2dS+r^{\sigma } \fint _{D_{2r}}|\nabla u|^2dx\\&\lesssim ^{(8.7)} r^{\sigma }\fint _{D_{2r}}|\nabla u|^2dx \lesssim \fint _{D_{2r}}|\nabla u|^2dx\Big (\fint _{B}\omega _{\sigma }\Big ). \end{aligned} \end{aligned}$$
(8.8)

According to the fact that \(\Big (\fint _{D_{2r}}|\nabla u|^2dx\Big )^{1/2}\lesssim \fint _{D_{2r}}|\nabla u|dx\) which follows from reverse Hölder’s inequality and a convexity argument(see [23, pp.173]), we have

$$\begin{aligned} \Big (\fint _{D_r}|\nabla u|^2\omega _{\sigma }dx\Big )^{1/2}\lesssim \Big (\fint _{D_{2r}}|\nabla u|dx\Big )\Big (\fint _{B}\omega _{\sigma }\Big )^{1/2} \lesssim \fint _{D_{2r}}|\nabla u|\omega _{\sigma }^{1/2}dx, \end{aligned}$$
(8.9)

and in the last inequality we use the following property of \(A_1\) weight: for any ball \(B\subset {\mathbb {R}}^d\), it holds that

$$\begin{aligned} \fint _{B}\omega _{\sigma }\le C \inf _{B}\omega _{\sigma }. \end{aligned}$$
(8.10)

Due to the self-improvement property of the above inequality (8.9), there exists \(p>2\) such that

$$\begin{aligned} \Big (\fint _{D_{r}}|\nabla u|^p\omega _{\sigma }^{p/2}dx\Big )^{1/p} \lesssim \fint _{D_{2r}}|\nabla u|\omega _{\sigma }^{1/2}dx. \end{aligned}$$

Step 2. The weighted real arguments lead to weighted \(W^{1,2}\) estimates (8.4). To do so, we decompose the equation (8.3) as follows:

$$\begin{aligned} (\text {i})\left\{ \begin{aligned} \nabla \cdot {\bar{a}}\nabla v&= \nabla \cdot (I_{4B}f)&\quad&\text {in}~~\varOmega ,\\ \partial v/\partial \nu&= -n\cdot (I_{4B}f)&\quad&\text {on}~~ (\partial \varOmega )_N,\\ v&= 0&\quad&\text {on}~~ (\partial \varOmega )_D, \end{aligned}\right. \qquad (\text {ii})\left\{ \begin{aligned} \nabla \cdot {\bar{a}}\nabla w&= \nabla \cdot g&\quad&\text {in}~~\varOmega ,\\ \partial w/\partial \nu&= -n\cdot g&\quad&\text {on}~~ (\partial \varOmega )_N,\\ w&= 0&\quad&\text {on}~~ (\partial \varOmega )_D, \end{aligned}\right. \end{aligned}$$
(8.11)

where \(g:=(1-I_{4B})f\). Hence, it is not hard to see that \(u=v+w\). On the one hand, from the equation \((\text {i})\) one may have, there exists a \(1<p_0<2\) such that

$$\begin{aligned} \Big (\fint _{B\cap \varOmega }|\nabla v|^{p_0}dx\Big )^{1/p_0} \lesssim \Big (\fint _{4B\cap \varOmega }|f|^{p_0}dx\Big )^{1/p_0}, \end{aligned}$$
(8.12)

where we employ the Meyer’s estimate for the solution of \((\text {i})\) and \(p_0\) is close to 2. One the other hand, it is known by Step 1 that w in \((\text {ii})\) satisfies the estimate

$$\begin{aligned} \begin{aligned} \Big (\fint _{B\cap \varOmega }|\nabla w|^p\omega _{\sigma }^{p/2}dx\Big )^{1/p}&\lesssim \fint _{2B\cap \varOmega }|\nabla w|\omega _{\sigma }^{1/2}dx\\&\lesssim \Big (\fint _{2B\cap \varOmega }|\nabla w|^{p_0}dx\Big )^{1/p_0} \Big (\fint _{B}\omega _{\sigma }\Big )^{1/2}, \end{aligned} \end{aligned}$$
(8.13)

in the last inequality we employ Hölder’s inequality and the property of \(A_p\) weight (6.17). Then it follows that

$$\begin{aligned} \begin{aligned}&\Big (\fint _{B\cap \varOmega }|\nabla w|^p\omega _{\sigma }dx\Big )^{1/p} \Big (\fint _{B}\omega _{\sigma }\Big )^{\frac{1}{2}-\frac{1}{p}} \\&\quad \lesssim ^{(8.10)} \Big (\fint _{B\cap \varOmega }|\nabla w|^p\omega _{\sigma }^{p/2}dx\Big )^{1/p}\\&\quad \lesssim ^{(8.13)} \Big (\fint _{2B\cap \varOmega }|\nabla w|^{p_0}dx\Big )^{1/p_0} \Big (\fint _{B}\omega _{\sigma }\Big )^{1/2} \\&\quad \lesssim \Bigg (\Big (\fint _{2B\cap \varOmega }|\nabla u|^{p_0}dx \Big )^{1/p_0} + \Big (\fint _{2B\cap \varOmega }|\nabla v|^{p_0}dx \Big )^{1/p_0}\Bigg ) \Big (\fint _{B}\omega _{\sigma }\Big )^{1/2}\\&\quad \lesssim ^{(8.12)} \Bigg (\Big (\fint _{2B\cap \varOmega }|\nabla u|^{p_0}dx \Big )^{1/p_0} + \Big (\fint _{4B\cap \varOmega }|f|^{p_0}dx\Big )^{1/p_0}\Bigg ) \Big (\fint _{B}\omega _{\sigma }\Big )^{1/2}. \end{aligned} \end{aligned}$$

Namely, it holds that

$$\begin{aligned} \Big (\fint _{B\cap \varOmega }|\nabla w|^p\omega _{\sigma }dx\Big )^{1/p}\lesssim \Bigg (\Big (\fint _{2B\cap \varOmega }|\nabla u|^{p_0}dx \Big )^{1/p_0} + \Big (\fint _{4B\cap \varOmega }|f|^{p_0}dx\Big )^{1/p_0}\Bigg ) \Big (\fint _{B}\omega _{\sigma }\Big )^{1/p}. \end{aligned}$$
(8.14)

Thus, the estimates (8.12) and (8.14) together with [44, Theorem 4.1] (weighted real methods) lead to

$$\begin{aligned} \int _{\varOmega }|\nabla u|^{2}\omega _{\sigma }dx \lesssim \Big (\int _{\varOmega }|\nabla u|^2dx\Big )\Big (\fint _{\varOmega }\omega _{\sigma }\Big ) + \int _{\varOmega }|f|^2\omega _{\sigma }dx \lesssim \int _{\varOmega }|f|^2\omega _{\sigma }dx, \end{aligned}$$

where the last inequality follows from energy estimate and (8.10). This completes the proof of (8.4). \(\square \)

Theorem 8.2

(layer & co-layer type estimates) Let \(\varOmega \subset {\mathbb {R}}^d\) be a bounded Lipschitz domain and \(0<\varepsilon <1\) small. Given \(F\in L^2(\varOmega ;{\mathbb {R}}^d)\) and \(g\in H^1(\partial \varOmega ; {\mathbb {R}}^d)\), let \(u_0\) be associated with F and g by the equation (1.6), where the coefficient \({\widehat{A}}\) satisfies the elasticity condition (2.1). Then there hold the following estimates.

  1. 1.

    \(L^p\) estimates:

    $$\begin{aligned} \Vert \nabla u_0\Vert _{L^{\frac{2d}{d-1}}(\varOmega )} \lesssim \Big \{\Vert F\Vert _{L^{\frac{2d}{d+1}}(\varOmega )} +\Vert g\Vert _{H^1(\partial \varOmega )}\Big \}. \end{aligned}$$
    (8.15)
  2. 2.

    Radial maximal function estimates

    $$\begin{aligned} \Vert \mathrm {M}_{r }(\nabla u_0)\Vert _{L^{2}(\partial \varOmega )} \lesssim \Big \{\Vert F\Vert _{L^{2}(\varOmega )} +\Vert g\Vert _{H^1(\partial \varOmega )}\Big \}, \end{aligned}$$
    (8.16)

    where the operator \(\mathrm {M}_{r }\) is defined by (1.31).

  3. 3.

    Layer type estimates

    $$\begin{aligned} \begin{aligned} \Vert \nabla u_{0}\Vert _{L^{2}(O_{4\varepsilon })}&\lesssim \varepsilon ^{\frac{1}{2}}\Big \{\Vert g\Vert _{H^{1}(\partial \varOmega )} +\Vert F\Vert _{L^{2}(\varOmega )}\Big \},\\ \Big (\int _{O_{4\varepsilon }} |\nabla u_{0}|^{2} \delta dx\Big )^{\frac{1}{2}}&\lesssim \varepsilon \Big \{\Vert g\Vert _{H^{1}(\partial \varOmega )} +\Vert F\Vert _{L^{2}(\varOmega )}\Big \}. \end{aligned} \end{aligned}$$
    (8.17)
  4. 4.

    Co-layer type estimates

    $$\begin{aligned} \begin{aligned} \Vert \nabla ^2 u_{0}\Vert _{L^{2}(\varOmega \backslash O_{4\varepsilon })}&\lesssim \varepsilon ^{-\frac{1}{2}} \Big \{\Vert g\Vert _{H^{1}(\partial \varOmega )}+ \Vert F\Vert _{L^{2}(\varOmega )}\Big \},\\ \Big (\int _{\varOmega \backslash O_{4\varepsilon }} |\nabla ^{2} u_{0}|^{2} \delta dx\Big )^{\frac{1}{2}}&\lesssim \ln ^{\frac{1}{2}}(1/\varepsilon ) \Big \{\Vert g\Vert _{H^{1}(\partial \varOmega )} +\Vert F\Vert _{L^{2}(\varOmega )}\Big \},\\ \Big (\int _{\varOmega \backslash O_{4\varepsilon }} |\nabla u_{0}|^{2}\delta ^{-1}dx\Big )^{\frac{1}{2}}&\lesssim \ln ^{\frac{1}{2}}(1/\varepsilon ) \Big \{\Vert g\Vert _{H^{1}(\partial \varOmega )} +\Vert F\Vert _{L^{2}(\varOmega )} \Big \}. \end{aligned} \end{aligned}$$
    (8.18)

The up to constants depend only on \({\widehat{\mu }}_{0}\), \({\widehat{\mu }}_{1}\), d and the boundary character of \(\varOmega \).

Remark 8.1

To the authors’ best knowledge, the first line of the estimates (8.17) and (8.18) were originally investigated by Shen [43, Theorems 2.6], while the second author generalized his arguments to the weighted type estimates (see [53, Lemma 4.5]).

Proof

Here we merely show the proofs of (8.15) and (8.16) by using a similar idea given for the estimates (8.17) and (8.18), which is inspired by [43, Theorems 2.6] as we have mentioned in Remark 8.1.

Firstly, we decompose \(u_{0}\) into two parts: v and w, which satisfy the following systems:

$$\begin{aligned} -\nabla \cdot ({\widehat{A}}\nabla v)={\tilde{F}} \qquad \text {in} \quad {\mathbb {R}}^d, \end{aligned}$$
(8.19)

and

$$\begin{aligned} \left\{ \begin{aligned} -\nabla \cdot ({\widehat{A}}\nabla w)&=0&\qquad&\text {in~} \varOmega ,\\ w&=g-v&\qquad&\text {on~}\partial \varOmega , \end{aligned} \right. \end{aligned}$$
(8.20)

respectively. Let \({\tilde{F}}\) be a zero-extension of F, satisfying \({\tilde{F}}=F\) in \(\varOmega \) and \({\tilde{F}}=0\) in \({\mathbb {R}}^d\backslash \varOmega \). In terms of (8.19), by the well-known fractional integral estimates and singular integral estimates for v (see for example [49]), we have that

$$\begin{aligned} \begin{aligned} \Vert \nabla v\Vert _{L^{p'}({\mathbb {R}}^d)}+ \Vert \nabla ^2 v\Vert _{L^p({\mathbb {R}}^d)}\le C\Vert {\tilde{F}}\Vert _{L^p({\mathbb {R}}^d)} \qquad \text {for~} 1<p<d, \quad \frac{1}{p'}=\frac{1}{p}-\frac{1}{d}. \end{aligned} \end{aligned}$$
(8.21)

It follows from the divergence theorem that

$$\begin{aligned} \begin{aligned} \int _{\partial \varOmega }|\nabla v|^2dS&\le C\bigg [ \int _{\varOmega }|\nabla v|^2dx+\int _{\varOmega }|\nabla v||\nabla ^2 v|dx\bigg ]\\&\lesssim \Vert \nabla v\Vert ^{2}_{L^{\frac{2d}{d-1}}(\varOmega )} +\Vert \nabla ^2 v\Vert ^{2}_{L^{\frac{2d}{d+1}}(\varOmega )}, \end{aligned} \end{aligned}$$
(8.22)

where we use Hölder’s inequality. Then we turn to the equation (8.20). It follows from the nontangential maximal function estimates for \(L^2\)-regular problem in Lipschitz domains (see [18]) that

$$\begin{aligned} \begin{aligned} \Vert (\nabla w)^{*}\Vert _{L^{2}(\partial \varOmega )}&\le C \bigg (\Vert \nabla _{\text {tan}}g\Vert _{L^{2}(\partial \varOmega )} +\Vert \nabla _{\text {tan}}v\Vert _{L^{2}(\partial \varOmega )}\bigg )\\&\lesssim \Vert g\Vert _{H^{1}(\partial \varOmega )} +\Vert \nabla v\Vert _{L^{2}(\partial \varOmega )}, \end{aligned} \end{aligned}$$

where \((\nabla w)^{*}\) denotes the nontangential maximal function of \(\nabla w\) (see (1.32) for its definition). On account of (8.22), we have

$$\begin{aligned} \begin{aligned} \Vert (\nabla w)^{*}\Vert _{L^{2}(\partial \varOmega )}&\lesssim \Vert g\Vert _{H^{1}(\partial \varOmega )}+\Vert \nabla v\Vert _{L^{\frac{2d}{d-1}}(\varOmega )} +\Vert \nabla ^2 v\Vert _{L^{\frac{2d}{d+1}}(\varOmega )}\\&\lesssim ^{(8.21)}\Vert g\Vert _{H^{1}(\partial \varOmega )} +\Vert F\Vert _{L^{\frac{2d}{d+1}}(\varOmega )}. \end{aligned} \end{aligned}$$
(8.23)

Secondly, for any \((u)^{*}\in L^2(\partial \varOmega )\), the fractional integral coupled with a duality argument gives the following inequality

$$\begin{aligned} \Vert u\Vert _{L^{\frac{2d}{d-1}}(\varOmega )} \lesssim \Vert (u)^{*}\Vert _{L^2(\partial \varOmega )} \end{aligned}$$
(8.24)

(see for example [34, Remark 9.3]). In terms of the radial maximal function estimates, it follows from [54, Lemma 2.24] that

$$\begin{aligned} \Vert \mathrm {M}_{\text {r}}(u)\Vert _{L^2(\partial \varOmega )} \lesssim \Vert u\Vert _{H^1(\varOmega )}. \end{aligned}$$
(8.25)

Consequently, based upon the decomposition \(u_0 = v+w\) above, there hold

$$\begin{aligned} \begin{aligned} \Vert \nabla u_0\Vert _{L^{\frac{2d}{d-1}}(\varOmega )}&\le \Vert \nabla v\Vert _{L^{\frac{2d}{d-1}}(\varOmega )} + \Vert \nabla w\Vert _{L^{\frac{2d}{d-1}}(\varOmega )}\\&\lesssim ^{(8.21),(8.24)} \Vert F\Vert _{L^{\frac{2d}{d+1}}(\varOmega )} + \Vert (\nabla w)^*\Vert _{L^{2}(\partial \varOmega )}\\&\lesssim ^{(8.23)} \Vert F\Vert _{L^{\frac{2d}{d+1}}(\varOmega )} + \Vert g\Vert _{H^1(\partial \varOmega )}, \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} \Vert \mathrm {M}_{\text {r}}(\nabla u_0)\Vert _{L^{2}(\partial \varOmega )}&\le \Vert \mathrm {M}_{\text {r}}(\nabla v)\Vert _{L^{2}(\partial \varOmega )} + \Vert \mathrm {M}_{\text {r}}(\nabla w)\Vert _{L^{2}(\partial \varOmega )}\\&\lesssim ^{(8.25)} \Vert \nabla v\Vert _{H^{1}(\varOmega )} + \Vert (\nabla w)^*\Vert _{L^{2}(\partial \varOmega )}\\&\lesssim ^{(8.21),(8.23)} \Vert F\Vert _{L^{2}(\varOmega )} + \Vert g\Vert _{H^1(\partial \varOmega )}, \end{aligned} \end{aligned}$$

where we note the fact that \(\mathrm {M}_{\text {r}}(\nabla w)(Q) \le (\nabla w)^*(Q)\) for a.e. \(Q\in \partial \varOmega \). This ends the proof. \(\square \)

Remark 8.2

If \(\partial \varOmega \in C^1\), then, for any \(1<q<\infty \), the solution w to (8.20) owns the nontangential maximal function estimates \(\Vert (\nabla w)^*\Vert _{L^q(\partial \varOmega )} \lesssim \Vert \nabla w\Vert _{L^q(\partial \varOmega )}\). Thus, for \(2\le p < \frac{2d}{d-2}\), there holds

$$\begin{aligned} \Vert \nabla u_0\Vert _{L^{p}(\varOmega )} \lesssim \Big \{\Vert F\Vert _{L^{2}(\varOmega )} +\Vert g\Vert _{W^{1,{\bar{p}}}(\partial \varOmega )}\Big \}, \end{aligned}$$
(8.26)

where \({\bar{p}}=p-p/d\), and the proof is the same as that given for (8.15), and so is omitted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Xu, Q. & Zhao, P. Convergence rates for linear elasticity systems on perforated domains. Calc. Var. 60, 74 (2021). https://doi.org/10.1007/s00526-021-01933-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-01933-7

Keywords

Navigation