Skip to main content

Advertisement

Log in

Complex affine isoperimetric inequalities

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Complex extensions of the Petty projection inequality and the Busemann–Petty centroid inequality are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abardia, J.: Difference bodies in complex vector spaces. J. Funct. Anal. 263(11), 3588–3603 (2012)

    Article  MathSciNet  Google Scholar 

  2. Abardia, J.: Minkowski valuations in a 2-dimensional complex vector space. Int. Math. Res. Not. 5, 1247–1262 (2015)

    Article  MathSciNet  Google Scholar 

  3. Abardia, J., Bernig, A.: Projection bodies in complex vector spaces. Adv. Math. 227, 830–846 (2011)

    Article  MathSciNet  Google Scholar 

  4. Abardia, J., Saorín Gómez, E.: How do difference bodies in complex vector spaces look like? A geometrical approach. Commun. Contemp. Math. 17(4), 145002 (2015)

    Article  MathSciNet  Google Scholar 

  5. Abardia, J., Wannerer, T.: Aleksandrov–Fenchel inequalities for unitary valuations of degree 2 and 3. Calc. Var. Partial Differ. Equ. 54(2), 1767–1791 (2015)

    Article  MathSciNet  Google Scholar 

  6. Abardia-Evéquoz, J., Böröczky, K., Domokos, M., Kertész, D.: \(SL(m, \mathbb{C})\)-equivariant and translation covariant continuous tensor valuations. https://arxiv.org/pdf/1801.08680.pdf (preprint)

  7. Bernig, A.: A Hadwiger-type theorem for the special unitary group. Geom. Funct. Anal. 19, 356–372 (2009)

    Article  MathSciNet  Google Scholar 

  8. Bernig, A., Fu, J.H.G., Solanes, G.: Integral geometry of complex space forms. Geom. Funct. Anal. 24, 403–492 (2014)

    Article  MathSciNet  Google Scholar 

  9. Bernig, A., Fu, J.H.G.: Hermitian integral geometry. Ann. Math. 2(173), 907–945 (2011)

    Article  MathSciNet  Google Scholar 

  10. Bolker, E.D.: A class of convex bodies. Trans. Am. Math. Soc. 145, 323–345 (1969)

    Article  MathSciNet  Google Scholar 

  11. Bourgain, J., Lindenstrauss, J.: Projection bodies. In: Lindenstrauss, J., Milman, V.D. (eds.) Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol. 1317, pp. 250–270. Springer, Berlin, Heidelberg (1988)

    Chapter  Google Scholar 

  12. Campi, S., Gronchi, P.: The \(L^{p}\)-Busemann–Petty centroid inequality. Adv. Math. 167, 128–141 (2002)

    Google Scholar 

  13. Cianchi, A., Lutwak, E., Yang, D., Zhang, G.: Affine Moser–Trudinger and Morrey–Sobolev inequalities. Calc. Var. Partial Differ. Equ. 36, 419–436 (2009)

    Article  MathSciNet  Google Scholar 

  14. Gardner, R.J.: Geometric Tomography. Encyclopedia of Mathematics and its Applications, vol. 58, 2nd edn. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  15. Gruber, P.: Convex and Discrete Geometry. Springer, Berlin (2007)

    MATH  Google Scholar 

  16. Haberl, C.: Minkowski valuations intertwining the special linear group. J. Eur. Math. Soc. 14, 1565–1597 (2012)

    Article  MathSciNet  Google Scholar 

  17. Haberl, C., Schuster, F.: Affine vs. Euclidean isoperimetric inequalities. https://arxiv.org/pdf/1804.11165.pdf (preprint)

  18. Haberl, C., Schuster, F.: General \({L}_p\) affine isoperimetric inequalities. J. Differ. Geom. 83, 1–26 (2009)

    Google Scholar 

  19. Haberl, C., Schuster, F., Xiao, J.: An asymmetric affine Pólya–Szegö principle. Math. Ann. 352, 517–542 (2012)

    Article  MathSciNet  Google Scholar 

  20. Haddad, J., Jiménez, C.H., Montenegro, M.: Sharp affine Sobolev type inequalities via the \({L}_{p}\) Busemann–Petty centroid inequality. J. Funct. Anal. 271, 454–473 (2016)

    Google Scholar 

  21. Koldobsky, A., Paouris, G.G., Zymonopoulou, M.: Complex intersection bodies. J. Lond. Math. Soc. 88(2), 538–562 (2013)

    Article  MathSciNet  Google Scholar 

  22. Koldobsky, A., König, H., Zymonopoulou, M.: The complex Busemann–Petty problem on sections of convex bodies. Adv. Math. 218(2), 352–367 (2008)

    Article  MathSciNet  Google Scholar 

  23. Koldobsky, A.: Fourier Analysis in Convex Geometry. Mathematical Surveys and Monographs, vol. 116. American Mathematical Society, Providence, RI (2005)

    Book  Google Scholar 

  24. Liu, L., Wang, W., Huang, Q.: On polars of mixed complex projection bodies. Bull. Korean Math. Soc. 52(2), 453–465 (2015)

    Article  MathSciNet  Google Scholar 

  25. Ludwig, M.: Projection bodies and valuations. Adv. Math. 172, 158–168 (2002)

    Article  MathSciNet  Google Scholar 

  26. Ludwig, M.: Minkowski valuations. Trans. Am. Math. Soc. 357, 4191–4213 (2005)

    Article  MathSciNet  Google Scholar 

  27. Lutwak, E.: A general isepiphanic inequality. Proc. Am. Math. Soc. 90(3), 415–421 (1984)

    Article  MathSciNet  Google Scholar 

  28. Lutwak, E.: On some affine isoperimetric inequalities. J. Differ. Geom. 23, 1–13 (1986)

    Article  MathSciNet  Google Scholar 

  29. Lutwak, E., Yang, D., Zhang, G.: \({L}_p\) affine isoperimetric inequalities. J. Differ. Geom. 56, 111–132 (2000)

    Google Scholar 

  30. Lutwak, E., Yang, D., Zhang, G.: Moment-entropy inequalities. Ann. Probab. 32(1B), 757–774 (2004)

    Article  MathSciNet  Google Scholar 

  31. Lutwak, E., Yang, D., Zhang, G.: Orlicz centroid bodies. J. Differ. Geom. 84, 365–387 (2010)

    Article  MathSciNet  Google Scholar 

  32. Lutwak, E., Yang, D., Zhang, G.: Orlicz projection bodies. Adv. Math. 223, 220–242 (2010)

    Article  MathSciNet  Google Scholar 

  33. Nguyen, V.H.: New approach to the affine Polya–Szegö principle and the stability version of the affine sobolev inequality. Adv. Math. 302, 1080–1110 (2016)

    Article  MathSciNet  Google Scholar 

  34. Petty, C.M.: Centroid surfaces. Pac. J. Math. 11, 1535–1547 (1961)

    Article  MathSciNet  Google Scholar 

  35. Petty, C.M.: Isoperimetric problems. In: Proceedings of the Conference on Convexity and Combinatorial Geometry, pp. 26–41, University of Oklahoma, Norman, OK (1971)

  36. Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory, 2nd edn. Cambridge University Press, Cambridge (2014)

    MATH  Google Scholar 

  37. Steineder, C.: Subword complexity and projection bodies. Adv. Math. 217, 2377–2400 (2008)

    Article  MathSciNet  Google Scholar 

  38. Thompson, A.C.: Minkowski Geometry. Encyclopedia of Mathematics and its Applications, vol. 63. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  39. Wang, T.: The affine Sobolev–Zhang in \(BV(\mathbb{R}^n)\). Adv. Math. 230, 2457–2473 (2012)

    Google Scholar 

  40. Wang, W., He, R.G.: Inequalities for mixed complex projection bodies. Taiwan. J. Math. 17(6), 1887–1899 (2013)

    Article  MathSciNet  Google Scholar 

  41. Wannerer, T.: Integral geometry of unitary area measures. Adv. Math. 263, 1–44 (2014)

    Article  MathSciNet  Google Scholar 

  42. Wannerer, T.: The module of unitarily invariant area measures. J. Differ. Geom. 96, 141–182 (2014)

    Article  MathSciNet  Google Scholar 

  43. Zhang, G.: The affine Sobolev inequality. J. Differ. Geom. 53, 183–202 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Haberl.

Additional information

Communicated by N. Trudinger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haberl, C. Complex affine isoperimetric inequalities. Calc. Var. 58, 169 (2019). https://doi.org/10.1007/s00526-019-1609-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1609-x

Mathematics Subject Classification

Navigation