Skip to main content
Log in

A limiting obstacle type problem for the inhomogeneous p-fractional Laplacian

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this manuscript we study an inhomogeneous obstacle type problem involving a fractional p-Laplacian type operator. First, we focus our attention in establishing existence and uniform estimates for any family of solutions \(\{u_p\}_{p \ge 2}\) which depend on the data of the problem and universal parameters. Next, we analyze the asymptotic behavior of such a family as \(p \rightarrow \infty \). At this point, we prove that \(\displaystyle \lim \nolimits _{p\rightarrow \infty } u_p(x) = u_{\infty }(x)\) there exists (up to a subsequence), verifies a limiting obstacle type problem in the viscosity sense, and it is an s-Hölder continuous function. We also present several explicit examples, as well as further features of the limit solutions and their free boundaries. In order to establish our results we overcome several technical difficulties and develop new strategies, which were not present in the literature for this type of problems. Finally, we remark that our results are new even for problems governed by fractional p-Laplacian operator, as well as they extend the previous ones by dealing with more general non-local operators, source terms and boundary data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersson, J., Lindgren, E., Shahgholian, H.: Optimal regularity for the obstacle problem for the \(p\)-Laplacian. J. Differ. Equ. 259(6), 2167–2179 (2015)

    Article  MathSciNet  Google Scholar 

  2. Barles, G., Imbert, C.: Second-order elliptic integro-differential equations: viscosity solutions theory revisited. Ann. Inst. H. Poincaré Anal. Non Linéaire 25(3), 567–585 (2008)

    Article  MathSciNet  Google Scholar 

  3. Blanc, P., da Silva, J.V., Rossi, J.D.: A limiting free boundary problem with gradient constraint and tug-of-war games. Ann. Mat. Pura Appl. (2019). https://doi.org/10.1007/s10231-019-00825-0

    Article  MathSciNet  MATH  Google Scholar 

  4. Bjorland, C., Caffarelli, L., Figalli, A.: Non-local gradient dependent operators. Adv. Math. 230, 1859–1894 (2012)

    Article  MathSciNet  Google Scholar 

  5. Bjorland, C., Caffarelli, L., Figalli, A.: Nonlocal tug-of-war and the infinity fractional Laplacian. Commun. Pure Appl. Math. 65(3), 337–380 (2012)

    Article  MathSciNet  Google Scholar 

  6. Bucur, C., Valdinocci, E.: Nonlocal Diffusion and Applications. Lecture Notes of the Unione Matematica Italiana, 20. Springer, [Cham]; Unione Matematica Italiana, Bologna, p. xii+155 (2016). ISBN: 978-3-319-28738-6, 978-3-319-28739-3

    Google Scholar 

  7. Caffarelli, L.A.: The Obstacle Problem. Lezioni Fermiane. [Fermi Lectures] Accademia Nazionale dei Lincei, Rome; Scuola Normale Superiore, Pisa, p. ii+54 (1998)

  8. Caffarelli, L.A., Ros-Oton, X., Serra, J.: Obstacle problems for integro-differential operators: regularity of solutions and free boundaries. Invent. Math. 208(3), 1155–1211 (2017)

    Article  MathSciNet  Google Scholar 

  9. Caffarelli, L.A., Salsa, S.: A Geometric Approach to Free Boundary Problems. Graduate Studies in Mathematics, 68, p. x+270. American Mathematical Society, Providence, RI (2005). ISBN: 0-8218-3784-2

    MATH  Google Scholar 

  10. Caffarelli, L.A., Salsa, S., Silvestre, L.: Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. Invent. Math. 171(2), 425–461 (2008)

    Article  MathSciNet  Google Scholar 

  11. Caffarelli, L.A., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(7–9), 1245–1260 (2007)

    Article  MathSciNet  Google Scholar 

  12. Capitanelli, R., Vivaldi, M.A.: Limit of \(p\)-Laplacian obstacle problems. arXiv:1811.03863v1

  13. Chambolle, A., Lindgren, E., Monneau, R.: A Hölder Infinity Laplacian. ESAIM Control Optim. Calc. Var. 18(3), 799–835 (2012)

    Article  MathSciNet  Google Scholar 

  14. Danielli, D., Salsa, S.: Obstacle Problems Involving the Fractional Laplacian. Recent Developments in Nonlocal theory, pp. 81–164. De Gruyter, Berlin (2018)

    MATH  Google Scholar 

  15. da Silva, J.V., Vivas, H.: The obstacle problem for a class of degenerate fully nonlinear operators. Preprint arXiv:1905.06146v2

  16. da Silva, J.V., Rossi, J.D.: The limit as \(p\rightarrow \infty \) in free boundary problems with fractional \(p\)-Laplacians. Trans. Am. Math. Soc. 371(4), 2739–2769 (2019)

    Article  MathSciNet  Google Scholar 

  17. da Silva, J.V., Rossi, J.D.: A limit case in non-isotropic two-phase minimization problems driven by \(p\)-Laplacians. Interfaces Free Bound. 20(3), 379–406 (2018)

    Article  MathSciNet  Google Scholar 

  18. da Silva, J.V., Rossi, J.D., Salort, A.: Regularity properties for \(p\)-dead core problems and their asymptotic limit as \(p \rightarrow \infty \). J. Lond. Math. Soc. (2) 99, 69–96 (2019)

    Article  MathSciNet  Google Scholar 

  19. Di Castro, A., Kuusi, T., Palatucci, G.: Local behavior of fractional \(p\)-minimizers. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(5), 1279–1299 (2016)

    Article  MathSciNet  Google Scholar 

  20. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MathSciNet  Google Scholar 

  21. Ferreira, R., Llanos, M.P.: Limit problems for a Fractional \(p\)-Laplacian as \(p \rightarrow \infty \). NoDEA Nonlinear Differ. Equ. Appl. 23(2), 14 (2016)

    Article  MathSciNet  Google Scholar 

  22. Figalli, A.: Regularity of interfaces in phase transitions via obstacle problems. In: Proceedings of the International Congress of Mathematicians (2018)

  23. Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Monographs in Mathematics, 80, p. xii+240. Birkhäuser Verlag, Basel (1984). ISBN: 0-8176-3153-4

    Book  Google Scholar 

  24. Iannizzotto, A., Mosconi, S., Squassina, M.: Global Hölder regularity for the fractional \(p\)-Laplacian. Rev. Mat. Iberoam. 32(4), 1353–1392 (2016)

    Article  MathSciNet  Google Scholar 

  25. Iannizzotto, A., Mosconi, S., Squassina, M.: A note on global regularity for the weak solutions of fractional \(p\)-Laplacian equations. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 27(1), 15–24 (2016)

    Article  MathSciNet  Google Scholar 

  26. Juutinen, P., Parviainen, M., Rossi, J.D.: Discontinuous gradient constraints and the infinity Laplacian. Int. Math. Res. Not. IMRN 8, 2451–2492 (2016)

    Article  MathSciNet  Google Scholar 

  27. Korvenpää, J., Kuusi, T., Lindgren, E.: Equivalence of solutions to fractional \(p\)-Laplace type equations. J. Math. Pures Appl. (2017). https://doi.org/10.1016/j.matpur.2017.10.004

    Article  Google Scholar 

  28. Korvenpää, J., Kuusi, T., Palatucci, G.: Hölder continuity up to the boundary for a class of fractional obstacle problems. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 27(3), 355–367 (2016)

    Article  MathSciNet  Google Scholar 

  29. Korvenpää, J., Kuusi, T., Palatucci, G.: The obstacle problem for nonlinear integro-differential operators. Calc. Var. Partial Differ. Equ. 55(3), 63 (2016)

    Article  MathSciNet  Google Scholar 

  30. Kuusi, T., Mingione, G., Sire, Y.: Regularity Issues Involving the Fractional \(p\)-Laplacian. Recent Developments in Nonlocal Theory, pp. 303–334. De Gruyter, Berlin (2018)

    MATH  Google Scholar 

  31. Lindgren, E.: Hölder estimates for viscosity solutions of equations of fractional \(p\)-Laplace type. NoDEA Nonlinear Differ. Equ. Appl. 23(5), 55 (2016)

    Article  Google Scholar 

  32. Manfredi, J.J., Rossi, J.D., Somersille, S.: An obstacle problem for tug-of-war games. Commun. Pure Appl. Anal. 14(1), 217–228 (2015)

    Article  MathSciNet  Google Scholar 

  33. Palatucci, G.: The Dirichlet problem for the \(p\)-fractional Laplace equation. Nonlinear Anal. 177(part b), 699–732 (2018)

    Article  MathSciNet  Google Scholar 

  34. Rodrigues, J.F.: Obstacle problems in mathematical physics. North-Holland Mathematics Studies, 134. Notas de Matemática [Mathematical Notes], 114. North-Holland Publishing Co., Amsterdam, p. xvi+352. ISBN: 0-444-70187-7 (1987)

    Chapter  Google Scholar 

  35. Rossi, J.D., Teixeira, E.V.: A limiting free boundary problem ruled by Aronsson’s equation. Trans. Am. Math. Soc. 364(2), 703–719 (2012)

    Article  MathSciNet  Google Scholar 

  36. Rossi, J.D., Teixeira, E.V., Urbano, J.M.: Optimal regularity at the free boundary for the infinity obstacle problem. Interfaces Free Bound. 17(3), 381–398 (2015)

    Article  MathSciNet  Google Scholar 

  37. Ros-Oton, X.: Nonlocal elliptic equations in bounded domains: a survey. Publ. Mat. 60, 3–26 (2016)

    Article  MathSciNet  Google Scholar 

  38. Ros-Oton, X.: Obstacle problems and free boundaries: an overview. SeMA J. 75, 399–419 (2018)

    Article  MathSciNet  Google Scholar 

  39. Salsa, S.: The problems of the obstacle in lower dimension and for the fractional Laplacian. In: Gianazza, U., Lewis, J. (eds.) Regularity Estimates for Nonlinear Elliptic and Parabolic Problems. Lecture Notes in Mathenatics, 2045, Fond. CIME/CIME Found. Subser, pp. 153–244. Springer, Heidelberg (2012)

    Google Scholar 

  40. Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60(1), 67–112 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Julio D. Rossi for sharing his intuition about the s-Hölder extension with obstacle constraint in the Sect. 2.3, as well as his insightful clarifications about the correct definition of limit operator. This work was partially supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-Argentina) under grant PIP GI No. 11220150100036CO and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (PNPD/CAPES-UnB-Brazil). J.V. da Silva and A. Salort are members of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Vitor da Silva.

Additional information

Communicated by L. Ambrosio.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, J.V., Salort, A.M. A limiting obstacle type problem for the inhomogeneous p-fractional Laplacian. Calc. Var. 58, 127 (2019). https://doi.org/10.1007/s00526-019-1573-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1573-5

Mathematics Subject Classification

Navigation