Skip to main content
Log in

Yamabe flow and metrics of constant scalar curvature on a complete manifold

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we give a condition on the initial metric which makes the global existence of Yamabe flow and we study the global behavior of the Yamabe flow in a complete noncompact Riemannian manifold. As application we study the ADM mass monotonicity of Yamabe flow in AF manifolds. We use the variational method to study the existence problem of metrics with constant scalar curvature on complete non-compact Riemannian manifolds and we can give a partial affirmative answer to a question posed by Kazdan (Math Ann 261(2):227–234, 1982).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. An, Y., Ma, L.: The Maximum Principle and the Yamabe Flow, Partial Differential Equations and Their Applications, pp. 211–224. World Scientific, Singapore (1999)

    MATH  Google Scholar 

  2. Bartnik, R.: The mass of an asymptotically flat manifold. Commun. Pure Appl. Math. 39, 661–693 (1986)

    Article  MathSciNet  Google Scholar 

  3. Brendle, S.: Convergence of the Yamabe flow for arbitrary initial energy. J. Differ. Geom. 69, 217–278 (2005)

    Article  MathSciNet  Google Scholar 

  4. Brendle, S.: Convergence of the Yamabe flow in dimension 6 and higher. Invent. Math. 170, 541–576 (2007)

    Article  MathSciNet  Google Scholar 

  5. Cheng, L., Zhu, A.: Yamabe flow and ADM mass on asymptotically flat manifolds. J. Math. Phys. 56, 101507 (2015). https://doi.org/10.1063/1.4934725

    Article  MathSciNet  MATH  Google Scholar 

  6. Chow, B.: Yamabe flow on locally conformally flat manifolds. Commun. Pure Appl. Math. XLV, 1003–1014 (1992)

    Article  Google Scholar 

  7. Chow, B., Lu, P., Ni, L.: Hamilton’s Ricci Flow, Graduate Studies in Mathematics, vol. 77. American Mathematical Society, Providence (2006)

    Google Scholar 

  8. Chrusciel, P.T., Herzlich, M.: The mass of asymptotically hyperbolic Riemannian manifolds. Pac. J. Math. 212, 231–264 (2003)

    Article  MathSciNet  Google Scholar 

  9. Dai, X., Ma, L.: Mass under Ricci flow. Commun. Math. Phys. 274, 65–80 (2007)

    Article  MathSciNet  Google Scholar 

  10. Daskalopoulos, P., Sesum, N.: The classification of locally conformally flat Yamabe solitons. Adv. Math. 240, 346–369 (2013)

    Article  MathSciNet  Google Scholar 

  11. Ecker, K., Knopf, D., Ni, L., Topping, P.: Local monotonicity and mean value formulas for evolving Riemannian manifolds. J. Reine Angew. Math. 616, 89–130 (2008). https://doi.org/10.1515/CRELLE.2008.019

    Article  MathSciNet  MATH  Google Scholar 

  12. Fischer-Colbrie, D., Schoen, R.: The structure of complete stable minimal surfaces in 3-manifolds of non-negative scalar curvature. Commun. Pure Appl. Math. 33, 199–211 (1980)

    Article  Google Scholar 

  13. Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs (1964)

    MATH  Google Scholar 

  14. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Springer, New York (1983)

    Book  Google Scholar 

  15. Hamilton, R.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 2, 255–306 (1982)

    Article  MathSciNet  Google Scholar 

  16. Hamilton, R.S.: Formation of singularities in the Ricci flow. Surv. Differ. Geom. 2, 7–136 (1995)

    Article  MathSciNet  Google Scholar 

  17. Hebey, E.: Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities. Courant Lecture Notes in Mathematics, vol. 5. New York University, Courant Institute of Mathematical Sciences, New York (1999). x+309 pp. ISBN: 0-9658703-4-0; 0-8218-2700-6

  18. Kazdan, J.L.: Deformation to positive scalar curvature on complete manifolds. Math. Ann. 261(2), 227–234 (1982)

    Article  MathSciNet  Google Scholar 

  19. Krylov, N., Safonov, M.: A certain property of solutions of parabolic equations with measurable coefficients. Math. USSR Zzv. 16, 151–164 (1981)

    Article  Google Scholar 

  20. Ladyzhenskaya, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type, AMS Translation of Monograph, vol. 23. American Mathematical Society, Providence (1968)

    Book  Google Scholar 

  21. Lee, J.M., Parker, T.H.: The Yamabe problem. Bull. Am. Math. Soc. 17, 37–91 (1987)

    Article  MathSciNet  Google Scholar 

  22. Ma, L.: Gap theorems for locally conformally flat manifolds. J. Differ. Equ. 260(2), 1414–1429 (2016)

    Article  MathSciNet  Google Scholar 

  23. Ma, L.: Expanding Ricci solitons with pinched Ricci curvature. Kodai Math. J. 34, 140–143 (2011)

    Article  MathSciNet  Google Scholar 

  24. Ma, L., Cheng, L.: Yamabe flow and Myers type theorem on complete manifolds. J. Geom. Anal. 24(1), 246–270 (2014). https://doi.org/10.1007/s12220-012-9336-y

    Article  MathSciNet  MATH  Google Scholar 

  25. Ma, L., Cheng, L., Zhu, A.: Extending Yamabe flow on complete Riemannian manifolds. Bull. Sci. Math. 136, 882–891 (2012)

    Article  MathSciNet  Google Scholar 

  26. Moss, W.F., Piepenbrink, J.: Positive solutions of elliptic equation. Pac. J. Math. 75, 219–226 (1978)

    Article  Google Scholar 

  27. Ni, L.: The Poisson equation and Hermitian–Einstein metrics on holomorphic vector boundle over complete non-compact Kaehler manifolds. Indiana Univ. Math. J. 51(3), 679–704 (2002)

    Article  MathSciNet  Google Scholar 

  28. Schulz, M.: Instantaneously complete Yamabe flow on hyperbolic space. arxiv:1612.02745v1

  29. Schwetlick, H., Struwe, M.: Convergence of the Yamabe flow for ’large’ energies. J. Reine Angew. Math. 562, 59–100 (2003)

    MathSciNet  MATH  Google Scholar 

  30. Souplet, P., Zhang, Q.: Sharp gradient estimate and Yau’s Liouville theorem for the heat equation on noncompact manifolds. Bull. Lond. Math. Soc. 38, 1045–1053 (2006)

    Article  MathSciNet  Google Scholar 

  31. Schoen, R., Yau, S.T.: Conformally flat manifolds, Kleinian groups and scalar curvature. Invent. Math. 92, 47–71 (1988)

    Article  MathSciNet  Google Scholar 

  32. Trudinger, N.S.: Pointwise estimates and quasilinear parabolic equations. Commun. Pure Appl. Math. XXI, 205–226 (1968)

    Article  MathSciNet  Google Scholar 

  33. Wang, X.: The mass of asymptotically hyperbolic manifolds. J. Differ. Geom. 57(2), 273–299 (2001)

    Article  MathSciNet  Google Scholar 

  34. Yamabe, H.: On a deformation of Riemannian structures on compact manifolds. Osaka Math. J. 12, 21–37 (1960)

    MathSciNet  MATH  Google Scholar 

  35. Ye, R.: Global existence and convergence of the Yamabe flow. J. Differ. Geom. 39, 35–50 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is very grateful to the unknown referees for helpful suggestions, in particular for pointing out the reference [32]. Part of the revision had been done when the author visited the Department of Mathematics at Stanford University in June and July of 2018 and the author would like to thank Prof. R. Schoen for the invitation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Ma.

Additional information

Communicated by M. Struwe.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research is partially supported by the National Natural Science Foundation of China Nos. 11771124 and 11271111.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L. Yamabe flow and metrics of constant scalar curvature on a complete manifold. Calc. Var. 58, 30 (2019). https://doi.org/10.1007/s00526-018-1470-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1470-3

Mathematics Subject Classification

Navigation