Skip to main content
Log in

Boundary regularity for minimizing biharmonic maps

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We prove full boundary regularity for minimizing biharmonic maps with smooth Dirichlet boundary conditions. Our result, similarly as in the case of harmonic maps, is based on the nonexistence of nonconstant boundary tangent maps. With the help of recently derivated boundary monotonicity formula for minimizing biharmonic maps by Altuntas we prove compactness at the boundary following Scheven’s interior argument. Then we combine those results with the conditional partial boundary regularity result for stationary biharmonic maps by Gong–Lamm–Wang.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. See Iwaniec [12, Note, p. 607].

References

  1. Adams, R.A.: Sobolev Spaces. Pure and Applied Mathematics, vol. 65. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York (1975)

    MATH  Google Scholar 

  2. Altuntas, S.: A boundary monotonicity inequality for variationally biharmonic maps and applications to regularity theory. Ann. Glob. Anal. Geom. (2018)

  3. Angelsberg, G.: A monotonicity formula for stationary biharmonic maps. Math. Z. 252(2), 287–293 (2006)

    Article  MathSciNet  Google Scholar 

  4. Breiner, C., Lamm, T.: Quantitative stratification and higher regularity for biharmonic maps. Manuscripta Math. 148(3–4), 379–398 (2015)

    Article  MathSciNet  Google Scholar 

  5. Chang, S.-Y.A., Wang, L., Yang, P.C.: A regularity theory of biharmonic maps. Commun. Pure Appl. Math. 52(9), 1113–1137 (1999)

    Article  MathSciNet  Google Scholar 

  6. Chen, Y.M., Lin, F.-H.: Evolution of harmonic maps with Dirichlet boundary conditions. Commun. Anal. Geom. 1(3–4), 327–346 (1993)

    Article  MathSciNet  Google Scholar 

  7. Fuchs, M.: \(p\)-Harmonic obstacle problems. III. Boundary regularity. Ann. Mat. Pura Appl. (4) 156, 159–180 (1990)

    Article  MathSciNet  Google Scholar 

  8. Giaquinta, M.: Introduction to Regularity Theory for Nonlinear Elliptic Systems. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel (1993)

    MATH  Google Scholar 

  9. Gong, H., Lamm, T., Wang, C.: Boundary partial regularity for a class of biharmonic maps. Calc. Var. Partial Differ. Equ. 45(1–2), 165–191 (2012)

    Article  MathSciNet  Google Scholar 

  10. Hardt, R., Lin, F.-H.: Mappings minimizing the \(L^p\) norm of the gradient. Commun. Pure Appl. Math. 40(5), 555–588 (1987)

    Article  Google Scholar 

  11. Hong, M.-C., Wang, C.: Regularity and relaxed problems of minimizing biharmonic maps into spheres. Calc. Var. Partial Differ. Equ. 23(4), 425–450 (2005)

    Article  MathSciNet  Google Scholar 

  12. Iwaniec, T.: \(p\)-Harmonic tensors and quasiregular mappings. Ann. Math. (2) 136(3), 589–624 (1992)

    Article  MathSciNet  Google Scholar 

  13. Lamm, T., Rivière, T.: Conservation laws for fourth order systems in four dimensions. Commun. Partial Differ. Equ. 33(1–3), 245–262 (2008)

    Article  MathSciNet  Google Scholar 

  14. Lamm, T., Wang, C.: Boundary regularity for polyharmonic maps in the critical dimension. Adv. Calc. Var. 2(1), 1–16 (2009)

    Article  MathSciNet  Google Scholar 

  15. Lin, F.-H.: Gradient estimates and blow-up analysis for stationary harmonic maps. Ann. Math. (2) 149(3), 785–829 (1999)

    Article  MathSciNet  Google Scholar 

  16. Luckhaus, S.: Partial Hölder continuity for minima of certain energies among maps into a Riemannian manifold. Indiana Univ. Math. J. 37(2), 349–367 (1988)

    Article  MathSciNet  Google Scholar 

  17. Moser, R.: Pointwise estimates by scaling for quasilinear equations. Unpublished manuscript (2005)

  18. Nash, J.: The imbedding problem for Riemannian manifolds. Ann. Math. (2) 63, 20–63 (1956)

    Article  MathSciNet  Google Scholar 

  19. Price, P.: A monotonicity formula for Yang–Mills fields. Manuscripta Math. 43(2–3), 131–166 (1983)

    Article  MathSciNet  Google Scholar 

  20. Scheven, C.: Variationally harmonic maps with general boundary conditions: boundary regularity. Calc. Var. Partial Differ. Equ. 25(4), 409–429 (2006)

    Article  MathSciNet  Google Scholar 

  21. Scheven, C.: Dimension reduction for the singular set of biharmonic maps. Adv. Calc. Var. 1(1), 53–91 (2008)

    Article  MathSciNet  Google Scholar 

  22. Schoen, R., Uhlenbeck, K.: A regularity theory for harmonic maps. J. Differ. Geom. 17(2), 307–335 (1982)

    Article  MathSciNet  Google Scholar 

  23. Schoen, R., Uhlenbeck, K.: Boundary regularity and the Dirichlet problem for harmonic maps. J. Differ. Geom. 18(2), 253–268 (1983)

    Article  MathSciNet  Google Scholar 

  24. Simon, L.: Lectures on Geometric Measure Theory. Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3. Australian National University, Canberra (1983)

    Google Scholar 

  25. Simon, L.: Theorems on Regularity and Singularity of Energy Minimizing Maps. Lectures in Mathematics ETH Zürich. Based on Lecture Notes by Norbert Hungerbühler. Birkhäuser, Basel (1996)

    Book  Google Scholar 

  26. Struwe, M.: Partial regularity for biharmonic maps, revisited. Calc. Var. Partial Differ. Equ. 33(2), 249–262 (2008)

    Article  MathSciNet  Google Scholar 

  27. Strzelecki, P.: On biharmonic maps and their generalizations. Calc. Var. Partial Differ. Equ. 18(4), 401–432 (2003)

    Article  MathSciNet  Google Scholar 

  28. Wang, C.: Boundary partial regularity for a class of harmonic maps. Comm. Partial Differ. Equ. 24(1–2), 355–368 (1999)

    Article  MathSciNet  Google Scholar 

  29. Wang, C.: Biharmonic maps from \(\mathbb{R}^4\) into a Riemannian manifold. Math. Z. 247(1), 65–87 (2004)

    Article  MathSciNet  Google Scholar 

  30. Wang, C.: Remarks on biharmonic maps into spheres. Calc. Var. Partial Differ. Equ. 21(3), 221–242 (2004)

    Article  MathSciNet  Google Scholar 

  31. Wang, C.: Stationary biharmonic maps from \(\mathbb{R}^m\) into a Riemannian manifold. Commun. Pure Appl. Math. 57(4), 419–444 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is based on the PhD thesis of the author under supervision of Paweł Strzelecki. The author would like to thank Paweł Strzelecki for many helpful discussions. The author would also like to thank Rémy Rodiac for pointing out the missing boundary condition in Lemma 4.3. The work was partially supported by the National Science Center in Poland via Grant NCN 2015/07/B/ST1/02360.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Mazowiecka.

Additional information

Communicated by M.Struwe.

Appendix A

Appendix A

Lemma A.1

There is a constant C depending only on m such that for any \(0<r<R\) and any map \(u\in W^{2,2}(B_R^+,\mathbb {R}^\ell )\) with vanishing \(W^{2,2}\) trace on \(T_R = \{x\in B_R:x_m=0\}\) we have

$$\begin{aligned} \int _{B_r^+}|\nabla ^2 u|^2 \,dx\le 2 \int _{B_R^+} \left( {|\Delta u|^2 + \frac{C}{(R-r)^2}|\nabla u|^2}\right) \,dx. \end{aligned}$$
(A.1)

Proof

The proof is exactly as in [21, Lemma A.1]. We choose the same cut-off function \(\eta \in C_c^\infty (B_R,[0,1])\) such that \(\eta \equiv 1\) on \(B_r\) and \(|\nabla \eta |<\frac{C}{(R-r)}\). If we assume that \(u\in C^\infty (B_R^+,\mathbb {R}^l)\) and integrate twice by parts the following integral

$$\begin{aligned} \int _{B_R^+} \eta ^4|\Delta |^2 \,dx, \end{aligned}$$

the boundary term will vanish on the flat part of \(\partial B_R^+\), because the \(W^{2,2}\) trace of u vanishes there. It will also vanish on the curved part of the boundary, for \(\eta \) vanishes there. Thus,

$$\begin{aligned} \int _{B_R^+}\eta ^4 u_{x_i x_i}u_{x_j x_j}\,dx&= - 4\int _{B_R^+}\eta ^3\eta _{x_j} u_{x_i x_i}u_{x_j}\,dx- \int _{B_R^+}\eta ^4 u_{x_i x_i x_j}u_{x_j}\,dx\\&= - 4\int _{B_R^+}\eta ^3\eta _{x_j} u_{x_i x_i}u_{x_j}\,dx+ 4\int _{B_R^+}\eta ^3\eta _{x_i} u_{x_i x_j}u_{x_j}\,dx\\&\quad \,\, + \int _{B_R^+}\eta ^4 u_{x_i x_j}u_{x_i x_j}\,dx. \end{aligned}$$

Hence,

$$\begin{aligned} \int _{B_R^+}\eta ^4 |\nabla ^2 u|^2 \,dx&\le \int _{B_R^+}\eta ^4 |\Delta u|^2 \,dx+ C\int _{B_R^+}\eta ^3|\nabla \eta ||\nabla u||\nabla ^2 u|\,dx\\&\le \int _{B_R^+}\eta ^4 |\Delta u|^2 \,dx+ \frac{1}{2} \int _{B_R^+}\eta ^4 |\nabla ^2 u|^2\,dx\\&\quad + \frac{C}{(R-r)^2}\int _{B_R^+}\eta ^2|\nabla u|^2 \,dx. \end{aligned}$$

The desired inequality for smooth u follows by subtracting \(\frac{1}{2} \int _{B_R^+}\eta ^4 |\nabla ^2 u|^2\,dx\) from both sides. Now an approximation argument yields the the same argument for \(W^{2,2}\) maps. \(\square \)

The next Lemma shows that by boundary monotonicity formula a bound in \(W^{2,2}\) implies a bound in the Morrey space \(L^{2,m-4}\). The proof is almost identical to the proof in the interior case, but as the boundary monotonicity formula yields an additional term we sketch the proof below.

Lemma A.2

Let \(u\in W^{2,2}(B^+_4,\mathcal {N})\) be a minimizing biharmonic map with boundary value \(\varphi \) as in (1.5) and let\(\left\| {u-\varphi }\right\| _{W^{2,2}(B^+)}<\infty \). Let \(\widetilde{u}\) be the reflection of \(u-\varphi \) given in 3.3, then

$$\begin{aligned} \sup _{y\in B,\ \rho <1} \rho ^{4-m}\int _{B_\rho (y)}|\nabla ^2 \widetilde{u}|^2 \,dx\le C \int _{B_2}|\nabla ^2 \widetilde{u}|^2 \,dx+ \widetilde{C}, \end{aligned}$$
(A.2)

for constants \(C=C(m)\) and \(\widetilde{C} = \widetilde{C}(m,\mathcal {N})\).

Proof of Lemma A.2

We give the necessary modification of [21, Lemma A.2].

We note that since u satisfies the boundary monotonicity formula (2.6) we have for \(\widetilde{u}\) and \(a\in T_1\) the following

$$\begin{aligned}&\rho ^{4-m}\int _{B_\rho (a)}|\nabla ^2 \widetilde{u}|^2 \,dx+ Ce^{C\rho } R^+_u(a,\rho )\nonumber \\&\quad \le C\left( {e^{Cr}r^{4-m}\int _{B_r(a)}|\nabla ^2 \widetilde{u}|^2 \,dx+ e^{Cr} R^+_u(a,r) + Cre^{Cr}}\right) . \end{aligned}$$
(A.3)

Let \(0<s<1/8\) be given. By Fubini theorem we may choose good radii \(\rho <r\) with \(s\le \rho \le 2s<\frac{1}{2}\le r\le 1\) such that

$$\begin{aligned} \rho ^{3-m}\int _{B_\rho (a)}|\nabla \widetilde{u}|^2 \,d\mathcal {H}^{m-1}&\le C s^{2-m}\int _{B_{2s(a)}}|\nabla \widetilde{u}|^2 \, dx;\\ \rho ^{5-m}\int _{B_\rho (a)}|\nabla ^2 \widetilde{u}|^2 \,d\mathcal {H}^{m-1}&\le C s^{4-m}\int _{B_{2s(a)}}|\nabla ^2 \widetilde{u}|^2 \, dx;\\ \int _{B_r(a)}\left( {|\nabla ^2 \widetilde{u}|^2 + |\nabla \widetilde{u}|^2}\right) \,d\mathcal {H}^{m-1}&\le C\int _{B_1(a)}\left( {|\nabla ^2 \widetilde{u}|^2 + |\nabla \widetilde{u}|^2}\right) \, dx, \end{aligned}$$

where the constant C depends only on the dimension m.

One can easily observe that

$$\begin{aligned} \left| R^+_{u,\varphi }(a,\tau )\right|&\le C\tau ^{4-m}\int _{\partial B^+_\tau (a)}\left( {|\nabla ^2 u||\nabla u| + \frac{1}{\tau }|\nabla u|^2}\right) \,d\mathcal {H}^{m-1}\\&\le C\tau ^{4-m}\int _{\partial B_\tau (a)}\left( {|\nabla ^2 \widetilde{u}||\nabla \widetilde{u}| + \frac{1}{\tau }|\nabla \widetilde{u}|^2}\right) \,d\mathcal {H}^{m-1}. \end{aligned}$$

Combining this observation with (A.3) we get

$$\begin{aligned} \rho ^{4-m}\int _{B_\rho (a)}|\nabla ^2 \widetilde{u}|^2 \,dx&\le Ce^{Cr}r^{4-m}\int _{B_r(a)}|\nabla ^2 \widetilde{u}|^2 \,dx+ Cre^{Cr}\\&\quad + C\rho ^{4-m}\int _{\partial B_\rho (a)}\left( {|\nabla ^2 \widetilde{u}||\nabla \widetilde{u}| + \frac{1}{\rho }|\nabla \widetilde{u}|^2}\right) \,d\mathcal {H}^{m-1}\\&\quad + C e^{Cr}r^{4-m}\int _{\partial B_r(a)}\left( {|\nabla ^2 \widetilde{u}||\nabla \widetilde{u}| + \frac{1}{r}|\nabla \widetilde{u}|^2}\right) \,d\mathcal {H}^{m-1}.\\ \end{aligned}$$

Thus, since \(s<\rho <2s\) and by Young’s inequality with \(\epsilon \)

$$\begin{aligned} s^{4-m}\int _{B_s(a)}|\nabla ^2 \widetilde{u}|^2 \,dx&\le C\rho ^{4-m}\int _{B_\rho (a)}|\nabla ^2 \widetilde{u}|^2 \,dx\nonumber \\&\le \frac{1}{4} (2s)^{4-m} \int _{B_{2s}(a)}|\nabla ^2 \widetilde{u}|^2\ dx + C s^{2-m}\int _{B_{2s}(a)}|\nabla \widetilde{u}|^2 \,dx\nonumber \\&\quad + C\int _{B_1(a)}|\nabla ^2 \widetilde{u}|^2 \,dx+ C\int _{B_1(a)}|\nabla \widetilde{u}|^2 \,dx+ C. \end{aligned}$$
(A.4)

Next, we proceed exactly as in [21]. Observe that by Nirenberg’s interpolation inequality

$$\begin{aligned} \Vert \nabla f\Vert _{L^4(\Omega )}^2 \le C(\Omega ) \Vert f\Vert _{L^\infty (\Omega )}\Vert f\Vert _{W^{2,2}(\Omega )} \end{aligned}$$

we have after a few transformations

$$\begin{aligned} C\tau ^{2-m}\int _{B_\tau (y)}|\nabla \widetilde{u}|^2 \,dx\le \frac{1}{4} \tau ^{4-m}\int _{B_{\tau }(y)}|\nabla \widetilde{u}|^2\,dx+ \widetilde{C} \end{aligned}$$
(A.5)

where \(\widetilde{C}\) is a constant dependent on the target manifold \(\mathcal {N}\). Applying (A.5) into (A.4) for \(\tau =1\) and \(\tau = 2s\), denoting \(\widehat{H}(\tau ):= \tau ^{4-m}\int _{B_\tau (y)}|\nabla ^2 \widetilde{u}|^2 \,dx\), we arrive at

$$\begin{aligned} \widehat{H}(s)\le \frac{1}{2} \widehat{H}(2s) + C\widehat{H}(1) + \widetilde{C} \end{aligned}$$

for all \(0<s<\frac{1}{4}\).

Thus, for all small \(\sigma >0\)

$$\begin{aligned} \sup _{\sigma<s<1} \widehat{H}(s) \le \sup _{\sigma<s<1/4} \widehat{H}(s) + C\widehat{H}(1) \le \frac{1}{2} \sup _{\sigma<s<1/4} \widehat{H}(2s)+ C\widehat{H}(1) + \widetilde{C}. \end{aligned}$$

Since \(\sigma >0\) the term \(\frac{1}{2} \sup _{\sigma<s<1/4} \widehat{H}({2}s)\) is finite and can be absorbed by the left hand side of the inequality giving

$$\begin{aligned} \sup _{\sigma<s<1}\widehat{H}(\rho )\le C\widehat{H}(1) + \widetilde{C}. \end{aligned}$$

The estimate is independent of \(\sigma >0\) and thus the claimed inequality follows. \(\square \)

Remark A.3

In the last proof we did not need a higher order reflection. An odd reflection is enough to ensure that if \(u-\varphi \in W^{2,2}_0(B^+,\mathbb {R}^\ell )\), then the reflected map is in \(W^{2,2}(B,\mathbb {R}^\ell )\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazowiecka, K. Boundary regularity for minimizing biharmonic maps. Calc. Var. 57, 143 (2018). https://doi.org/10.1007/s00526-018-1429-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1429-4

Mathematics Subject Classification

Navigation