Skip to main content
Log in

Gradient shrinking Ricci solitons of half harmonic Weyl curvature

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

A Correction to this article was published on 08 April 2021

This article has been updated

Abstract

Gradient Ricci solitons and metrics with half harmonic Weyl curvature are two natural generalizations of Einstein metrics on four-manifolds. In this paper we prove that if a metric has structures of both gradient shrinking Ricci soliton and half harmonic Weyl curvature, then except for three examples, it has to be an Einstein metric with positive scalar curvature. Precisely, we prove that a four-dimensional gradient shrinking Ricci soliton with \(\delta W^{\pm }=0\) is either Einstein, or a finite quotient of \(S^3\times \mathbb {R}\), \(S^2\times \mathbb {R}^2\) or \(\mathbb {R}^4\). We also prove that a four-dimensional gradient Ricci soliton with constant scalar curvature is either Kähler–Einstein, or a finite quotient of \(M\times \mathbb {C}\), where M is a Riemann surface. The method of our proof is to construct a weighted subharmonic function using curvature decompositions and the Weitzenböck formula for half Weyl curvature, and the method was motivated by previous work (Gursky and LeBrun in Ann Glob Anal Geom 17:315–328, 1999; Wu in Einstein four-manifolds of three-nonnegative curvature operator 2013; Trans Am Math Soc 369:1079–1096, 2017; Yang in Invent Math 142:435–450, 2000) on the rigidity of Einstein four-manifolds with positive sectional curvature, and previous work (Cao and Chen in Trans Am Math Soc 364:2377–2391, 2012; Duke Math J 162:1003–1204, 2013; Catino in Math Ann 35:629–635, 2013) on the rigidity of gradient Ricci solitons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Besse, A.: Einstein Manifolds. Springer, Berlin (1987)

    Book  Google Scholar 

  2. Cai, M.: On shrinking gradient Ricci soliton with nonnegative sectional curvature. Pac. J. Math. 277(1), 61–76 (2015)

    Article  MathSciNet  Google Scholar 

  3. Calamai, S., Petrecca, D.: On Calabi extremal Kähler-Ricci solitons. Proc. Am. Math. Soc. 144(2), 813–821 (2016)

    Article  Google Scholar 

  4. Cao, H.-D.: Existence of gradient Kähler–Ricci solitons. In: Chow, B., Gulliver, R., Levy, S., Sullivan, J. (eds.) Elliptic and Parabolic Methods in Geometry (Minneapolis, MN, 1994), pp. 1–6. A K Peters, Wellesley, MA (1996)

  5. Cao, H.-D.: Recent progress on Ricci solitons. Recent Advances in Geometric Analysis. In: Lee, Y-I., Lin, C-S., Tsui, M-P (eds.) Advanced Lectures in Mathematics (ALM), vol. 11, pp. 1–8. International Press, Somerville (2010)

  6. Cao, H.-D., Chen, Q.: On locally conformally flat gradient steady Ricci solitons. Trans. Am. Math. Soc. 364, 2377–2391 (2012)

    Article  MathSciNet  Google Scholar 

  7. Cao, H.-D., Chen, Q.: On Bach-flat gradient shrinking Ricci solitons. Duke Math. J. 162, 1003–1204 (2013)

    Article  MathSciNet  Google Scholar 

  8. Cao, H.-D., Chen, B.-L., Zhu, X.-P.: Recent developments on Hamilton’s Ricci flow. In: Surveys in Differential Geometry, vol. XII. Geometric Flows. Surveys in Differential Geometry, vol. 12, pp. 47–112. International Press, Somerville (2008)

  9. Cao, X.: Closed gradient shrinking Ricci soli tons with positive curvature operator. J. Geom. Anal. 17, 451–459 (2007)

    Article  Google Scholar 

  10. Cao, X., Wang, B., Zhang, Z.: On locally conformally flat gradient Ricci solitons. Commun. Contemp. Math. 13, 269–282 (2010)

    Article  MathSciNet  Google Scholar 

  11. Catino, G.: Complete gradient shrinking Ricci solitons with pinched curvature. Math. Ann. 35, 629–635 (2013)

    Article  MathSciNet  Google Scholar 

  12. Chen, B.-L.: Strong uniqueness of the Ricci flow. J. Differ. Geom. 82, 363–382 (2009)

    Article  MathSciNet  Google Scholar 

  13. Chen, Q., Zhu, M.: On rigidity of gradient Kähler–Ricci solitons with harmonic Bochner tensor. Proc. Am. Math. Soc. 140, 4017–4025 (2012)

    Article  Google Scholar 

  14. Chen, X., Wang, Y.: On four-dimensional anti-self-dual gradient Ricci solitons. J. Geom. Anal. 25(2), 1335–1343 (2015)

    Article  MathSciNet  Google Scholar 

  15. Derdziński, A.: Self-dual Kähler manifolds and Einstein manifolds of dimension four. Commun. Math. 49, 405–433 (1983)

    MathSciNet  MATH  Google Scholar 

  16. Eminenti, M., La Nave, G., Mantegazza, C.: Ricci solitons: the equation point of view. Manuscr. Math. 127, 345–367 (2008)

    Article  MathSciNet  Google Scholar 

  17. Feldman, M., Ilmanen, T., Knopf, D.: Rotationally symmetric shrinking and expanding gradient Kähler–Ricci solitons. J. Differ. Geom. 65, 169–209 (2003)

    Article  Google Scholar 

  18. Fernández-López, M., García-Río, E.: Rigidity of shrinking Ricci solitons. Math. Z. 269, 461–466 (2011)

    Article  MathSciNet  Google Scholar 

  19. Fernández-López, M., García-Río, E.: On gradient Ricci solitons with constant scalar curvature. Proc. Am. Math. Soc. 144(1), 369–378 (2016)

    Article  MathSciNet  Google Scholar 

  20. Grusky, M.: Four-manifolds with \(\delta W^+=0\) and Einstein constants of the sphere. Math. Ann. 318, 417–431 (2000)

    Article  MathSciNet  Google Scholar 

  21. Gursky, M., LeBrun, C.: On Einstein manifolds of positive sectional curvature. Ann. Glob. Anal. Geom. 17, 315–328 (1999)

    Article  MathSciNet  Google Scholar 

  22. Hamilton, R.S.: Three manifolds with positive Ricci curvature. J. Differ. Geom. 17, 255–306 (1982)

    Article  MathSciNet  Google Scholar 

  23. Hamilton, R.S.: The Ricci flow on surfaces. Contemp. Math. 71, 237–261 (1988)

    Article  MathSciNet  Google Scholar 

  24. Hamilton, R.S.: The formation of singularities in the Ricci flow. In: Surveys in Differential Geometry, vol. II (Cambridge, MA, 1993), pp. 7–136. International Press, Cambridge (1995)

    Article  MathSciNet  Google Scholar 

  25. Ivey, T.: Ricci solitons on compact three-manifolds. Differ. Geom. Appl. 3, 301–307 (1993)

    Article  MathSciNet  Google Scholar 

  26. Ivey, T.: Local existence of Ricci solitons. Manuscr. Math. 91, 151–162 (1996)

    Article  MathSciNet  Google Scholar 

  27. Koiso, N.: On rotationally symmmetric Hamilton’s equation for Kähler-Einstein metrics. Recent Topics in Differential Global Analysis and Geometry. In: Aomoto, K., Oda, T., Ochiai, T. (eds.) Advanced Studies in Pure Mathematics, 18-I, pp. 327–370. Academic Press, Boston, MA (1990)

  28. Kotschwar, B.: A local version of Bando’s theorem on the real-analyticity of solutions to the Ricci flow. Bull. Lond. Math. Soc. 45, 153–158 (2013)

    Article  MathSciNet  Google Scholar 

  29. Munteanu, O., Sesum, N.: On gradient Ricci solitons. J. Geom. Anal. 23, 539–561 (2013)

    Article  MathSciNet  Google Scholar 

  30. Munteanu, O., Wang, M.-T.: The curvature of gradient Ricci solitons. Math. Res. Lett. 18, 1051–1069 (2011)

    Article  MathSciNet  Google Scholar 

  31. Naber, A.: Noncompact shrinking four solitons with nonnegative curvature. J. Reine Angew. Math. 645, 125–153 (2010)

    MathSciNet  MATH  Google Scholar 

  32. Ni, L., Wallach, N.: On a classification of the gradient shrinking Ricci solitons. Math. Res. Lett. 15, 941–955 (2008)

    Article  MathSciNet  Google Scholar 

  33. Ni, L., Wallach, N.: On 4-dimensional gradient shrinking solitons. Int. Math. Res. Not. 4, rnm152 (2008)

    MathSciNet  MATH  Google Scholar 

  34. Perelman, G.: The entropy formula for the Ricci slow and its geometric applications, arXiv:math.DG/0211159 (2002)

  35. Perelman, G.: Ricci flow with surgery on three-manifolds. arXiv:math.DG/0303109 (2003)

  36. Perelman, G.: Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. arXiv:math.DG/0307245 (2003)

  37. Petersen, P., Wylie, W.: On the classification of gradient Ricci solitons. Geom. Topol. 14, 2277–2300 (2010)

    Article  MathSciNet  Google Scholar 

  38. Petersen, P., Wylie, W.: Rigidity of gradient Ricci solitons. Pac. J. Math. 241, 329–345 (2009)

    Article  MathSciNet  Google Scholar 

  39. Pigola, S., Rimoldi, M., Setti, A.: Remarks on non-compact gradient Ricci solitons. Math. Z. 268, 777–790 (2011)

    Article  MathSciNet  Google Scholar 

  40. Su, Y., Zhang, K.: On the Kähler–Ricci solitons with vanishing Bochner–Weyl tensor. Acta Math. Sci. Ser. B Engl. Ed. 32B, 1239–1244 (2012)

    MATH  Google Scholar 

  41. Timofte, V.: On the positivity of symmetric polynomial functions. Part I: general results. J. Math. Anal. Appl. 284, 174–190 (2003)

    Article  MathSciNet  Google Scholar 

  42. Wang, X.J., Zhu, X.H.: Kähler–Ricci solitons on toric manifolds with positive first Chern class. Adv. Math. 188(1), 87–103 (2004)

    Article  MathSciNet  Google Scholar 

  43. Wu, P.: Einstein four-manifolds of three-nonnegative curvature operator, preprint (2013)

  44. Wu, P.: A Weitzenböck formula for canonial metrics on four-manifolds. Trans. Am. Math. Soc. 369, 1079–1096 (2017)

    Article  Google Scholar 

  45. Yang, D.: Rigidity of Einstein 4-manifolds with positive curvature. Invent. Math. 142, 435–450 (2000)

    Article  MathSciNet  Google Scholar 

  46. Zhang, Z.-H.: Gradient shrinking solitons with vanishing Weyl tensor. Pac. J. Math. 242, 2755–2759 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Part of the work was done when the first author was visiting the Department of Mathematics at Cornell University, he greatly thanks Professor Xiaodong Cao for his help and Department of Mathematics for their hospitality. The second author thanks Professors Jeffrey Case, Yuanqi Wang and Yuan Yuan for helpful discussions. We thank the anonymous referee for many valuable suggestions. The first author was partially supported by the China Scholarship Council (201208310431), NSFC (11671141) and the Natural Science Foundation of Shanghai (17ZR1412800). The second author was partially supported by an AMS-Simons postdoc travel grant, China Recruit Program for Global Young Talents, and NSFC (11701093). The third author was partially supported by a grant from the Simons Foundation (355608, William Wylie) and the NSF (1654034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Wu.

Additional information

Communicated by J. Jost.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, JY., Wu, P. & Wylie, W. Gradient shrinking Ricci solitons of half harmonic Weyl curvature. Calc. Var. 57, 141 (2018). https://doi.org/10.1007/s00526-018-1415-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1415-x

Mathematics Subject Classification

Navigation