Skip to main content
Log in

Adiabatic limits and Kazdan–Warner equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study the limiting behaviour of solutions to abelian vortex equations when the volume of the underlying Riemann surface grows to infinity. We prove that the solutions converge smoothly away from finitely many points. The proof relies on a priori estimates for functions satisfying generalised Kazdan–Warner equations. We relate our results to the work of Hong, Jost, and Struwe on classical vortices, and that of Haydys and Walpuski on the Seiberg–Witten equations with multiple spinors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. By slight abuse of notation, we will denote by the same symbol a divisor and the underlying set of points.

References

  1. Bismut, J.-M., Cheeger, J.: \(\eta \)-invariants and their adiabatic limits. J. Am. Math. Soc. 2(1), 33–70 (1989)

    MathSciNet  MATH  Google Scholar 

  2. Bradlow, S.B., García-Prada, O.: Non-abelian monopoles and vortices. In: Geometry and Physics (Aarhus, 1995), Volume 184 of Lecture Notes in Pure and Applied Mathematics, pp. 567–589. Dekker, New York (1997)

  3. Bradlow, S.B.: Vortices in holomorphic line bundles over closed Kähler manifolds. Commun. Math. Phys. 135(1), 1–17 (1990)

    Article  Google Scholar 

  4. Bryan, J.A., Wentworth, R.: The multi-monopole equations for Kähler surfaces. Turk. J. Math. 20(1), 119–128 (1996)

    MATH  Google Scholar 

  5. Cieliebak, K., Gaio, A .R., Mundet i Riera, I., Salamon, D .A.: The symplectic vortex equations and invariants of Hamiltonian group actions. J. Symplectic Geom. 1(3), 543–645 (2002)

    Article  MathSciNet  Google Scholar 

  6. Doan, A.: Seiberg–Witten monopoles with multiple spinors on a surface times a circle. eprint arXiv:1701.07942 (2017)

  7. Donaldson, S., Segal, E.: Gauge theory in higher dimensions. II. In: Surveys in Differential Geometry. Volume XVI. Geometry of Special Holonomy and Related Topics, pp. 1–41. International Press, Somerville, MA (2011)

    Article  MathSciNet  Google Scholar 

  8. Dostoglou, S., Salamon, D .A.: Self-dual instantons and holomorphic curves. Ann. Math. (2) 139(3), 581–640 (1994)

    Article  MathSciNet  Google Scholar 

  9. Doan, A., Walpuski, T.: On the existence of harmonic \({\mathbb{Z}}_2\) spinors. eprint arXiv:1710.06781 (2017)

  10. Fine, J.: Constant scalar curvature Kähler metrics on fibred complex surfaces. J. Differ. Geom. 68(3), 397–432 (2004)

    Article  MathSciNet  Google Scholar 

  11. Garcí a Prada, O.: Invariant connections and vortices. Commun. Math. Phys. 156(3), 527–546 (1993)

    Article  MathSciNet  Google Scholar 

  12. Garcí a Prada, O.: A direct existence proof for the vortex equations over a compact Riemann surface. Bull. Lond. Math. Soc. 26(1), 88–96 (1994)

    Article  MathSciNet  Google Scholar 

  13. Gaio, A.R.P., Salamon, D.A.: Gromov–Witten invariants of symplectic quotients and adiabatic limits. J. Symplectic Geom. 3(1), 55–159 (2005)

    Article  MathSciNet  Google Scholar 

  14. Haydys, A.: The infinitesimal structure of the blow-up set for the Seiberg–Witten equation with multiple spinors. eprint arXiv:1607.01763 (2016)

  15. Haydys, A.: \(G_2\)-instantons and Seiberg–Witten monopoles. eprint arXiv:1703.06329 (2017)

  16. Hong, M.-C., Jost, J., Struwe, M.: Asymptotic limits of a Ginzburg–Landau type functional. In: Geometric Analysis and the Calculus of Variations, pp. 99–123. International Press, Cambridge, MA (1996)

  17. Haydys, A., Walpuski, T.: A compactness theorem for the Seiberg–Witten equation with multiple spinors in dimension three. Geom. Funct. Anal. 25(6), 1799–1821 (2015)

    Article  MathSciNet  Google Scholar 

  18. Jaffe, A., Taubes, C.: Vortices and Monopoles, Volume 2 of Progress in Physics. Birkhäuser, Boston, MA, Structure of static gauge theories (1980)

  19. Kazdan, J.L., Warner, F.W.: Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvatures. Ann. Math. 2(101), 317–331 (1975)

    Article  MathSciNet  Google Scholar 

  20. Mochizuki, T.: Asymptotic behaviour of certain families of harmonic bundles on Riemann surfaces. J. Topol. 9(4), 1021–1073 (2016)

    Article  MathSciNet  Google Scholar 

  21. Mazzeo, R., Swoboda, J., Weiss, H., Witt, F.: Ends of the moduli space of Higgs bundles. Duke Math. J. 165(12), 2227–2271 (2016)

    Article  MathSciNet  Google Scholar 

  22. Noguchi, M.: Yang–Mills–Higgs theory on a compact Riemann surface. J. Math. Phys. 28(10), 2343–2346 (1987)

    Article  MathSciNet  Google Scholar 

  23. Taubes, C.H.: The zero loci of \({\mathbb{Z}}_2\) harmonic spinors in dimension 2, 3 and 4. eprint arXiv:1407.6206 (2014)

  24. Walpuski, T.: G2-instantons, associative submanifolds and Fueter sections. eprint arXiv:1205.5350 (2012)

Download references

Acknowledgements

The work presented in this article is part of my doctoral thesis at Stony Brook University. I am grateful to my advisor Simon Donaldson for his guidance and support. Thanks to Andriy Haydys and Thomas Walpuski for their encouragement and many helpful discussions, and to Gonçalo Oliveira, Oscar Garcia–Prada, Song Sun, Alex Waldron, and the anonymous referee for valuable comments on the previous versions of this paper. I am supported by the Simons Collaboration on Special Holonomy in Geometry, Analysis, and Physics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksander Doan.

Additional information

Communicated by J. Jost.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doan, A. Adiabatic limits and Kazdan–Warner equations. Calc. Var. 57, 124 (2018). https://doi.org/10.1007/s00526-018-1371-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1371-5

Mathematics Subject Classification

Navigation