Skip to main content
Log in

Existence of tangent lines to Carnot–Carathéodory geodesics

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We show that length minimizing curves in Carnot–Carathéodory spaces possess at any point at least one tangent curve (i.e., a blow-up in the nilpotent approximation) equal to a straight horizontal line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrachev, A.A.: Some open problems. In: Geometric Control Theory and Sub-Riemannian Geometry, Springer INdAM Series 5, pp. 1–14 (2014)

  2. Agrachev, A.A., Sachkov, Y.L.: Control Theory from the Geometric Viewpoint. Encyclopaedia of Mathematical Sciences 87. Control Theory and Optimization, II. Springer, Berlin (2004)

    Google Scholar 

  3. Allard, W.K.: On the first variation of a varifold. Ann. Math. (2) 95, 417–491 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bellaïche, A.: The tangent space in sub-Riemannian geometry. In: Sub-Riemannian Geometry, Progress in Mathematics, Vol. 144, pp. 1–78 (1996)

  5. Evans, L.C.: Quasiconvexity and partial regularity in the calculus of variations. Arch. Ration. Mech. Anal. 95(3), 227–252 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Monographs in Mathematics, vol. 80. Birkhäuser, Basel (1984)

    Book  MATH  Google Scholar 

  7. Hakavuori, E., Le Donne, E.: Non-minimality of corners in subriemannian geometry. Invent. Math. 206(3), 693–704 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hermes, H.: Nilpotent and high-order approximations of vector field systems. SIAM Rev. 33(2), 238–264 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jean, F.: Control of Nonholonomic Systems: From Sub-Riemannian Geometry to Motion Planning. Springer Briefs in Mathematics. Springer, Cham (2014)

    Google Scholar 

  10. Knapp, A.W.: Lie Groups Beyond an Introduction. Progress in Mathematics, vol.140, 2nd edn. Birkhäuser Boston, Inc., Boston, MA (2002)

  11. Le Donne, E., Leonardi, G.P., Monti, R., Vittone, D.: Extremal curves in nilpotent Lie groups. Geom. Funct. Anal. 23, 1371–1401 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Le Donne, E., Leonardi, G.P., Monti, R., Vittone, D.: Extremal polynomials in stratified groups. Commun. Anal. Geom. (to appear). ArXiv preprint arXiv:1307.5235

  13. Le Donne, E., Leonardi, G.P., Monti, R., Vittone, D.: Corners in non-equiregular sub-Riemannian manifolds. ESAIM Control Optim. Calc. Var. 21, 625–634 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Leonardi, G.P., Monti, R.: End-point equations and regularity of sub-Riemannian geodesics. Geom. Funct. Anal. 18(2), 552–582 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Maggi, F.: Sets of Finite Perimeter and Geometric Variational Problems. An Introduction to Geometric Measure Theory. Cambridge Studies in Advanced Mathematics, vol. 135. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  16. Margulis, G.A., Mostow, G.D.: Some remarks on the definition of tangent cones in a Carnot–Carathéodory space. J. Anal. Math. 80, 299–317 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mitchell, J.: On Carnot–Carathéodory metrics. J. Differ. Geom. 21(1), 35–45 (1985)

    Article  MATH  Google Scholar 

  18. Montgomery, R.: Abnormal minimizers. SIAM J. Control Optim. 32(6), 1605–1620 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Montgomery, R.: A Tour of Subriemannian Geometries, Their Geodesics and Applications. Mathematical Surveys and Monographs, vol. 91. American Mathematical Society, Providence (2002)

    MATH  Google Scholar 

  20. Monti, R.: Regularity results for sub-Riemannian geodesics. Calc. Var. Partial Differ. Equs. 49(1–2), 549–582 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Monti, R.: The regularity problem for sub-Riemannian geodesics. In: Geometric Control Theory and Sub-Riemannian Geometry, Springer INdAM Series, Vol. 5, pp. 313–332 (2014)

  22. Monti, R., Pigati, A., Vittone, D.: On tangent cones to length minimizers in Carnot–Carathéodory spaces. ArXiv preprint arXiv:1707.07990 (2017)

  23. Rifford, L.: Singulières minimisantes en géometrié sous-riemannienne, Séminaire Bourbaki, Mars 2016 68ème année, no. 1113 (2015–2016)

  24. Sussmann, H.J.: A regularity theorem for minimizers of real-analytic subriemannian metrics. In: Proceedings of the 53rd IEEE Conference on Decision and Control, pp. 4801–4806 (2015)

  25. Vittone, D.: The regularity problem for sub-Riemannian geodesics. In: Ambrosio, L. (ed.) Geometric Measure Theory and Real Analysis, pp. 193–226. Scuola Normale Superiore, Pisa (2014)

    Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous referee for carefully reading the paper and for helpful advice. We thank L. Ambrosio for several discussions and for being an invaluable mentor and friend.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Vittone.

Additional information

Communicated by L. Ambrosio.

R. M. and D. V. are supported by MIUR (Italy) and University of Padova STARS Project “Sub-Riemannian Geometry and Geometric Measure Theory Issues: Old and New” (SUGGESTION). D. V. is also supported by University of Padova Project Networking and INdAM-GNAMPA Project 2017 “Campi vettoriali, superfici e perimetri in geometrie singolari”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monti, R., Pigati, A. & Vittone, D. Existence of tangent lines to Carnot–Carathéodory geodesics. Calc. Var. 57, 75 (2018). https://doi.org/10.1007/s00526-018-1361-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1361-7

Mathematics Subject Classification

Navigation