Skip to main content
Log in

Complete \(\lambda \)-hypersurfaces of weighted volume-preserving mean curvature flow

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we introduce a special class of hypersurfaces which are called \(\lambda \)-hypersurfaces related to a weighted volume preserving mean curvature flow in the Euclidean space. We prove that \(\lambda \)-hypersurfaces are critical points of the weighted area functional for the weighted volume-preserving variations. Furthermore, we classify complete \(\lambda \)-hypersurfaces with polynomial area growth and \(H-\lambda \ge 0\). The classification result generalizes the results of Huisken (J Differ Geom 31:285–299, 1990) and Colding and Minicozzi (Ann Math 175:755–833, 2012).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abresch, U., Langer, J.: The normalized curve shortening flow and homothetic solutions. J. Differ. Geom. 23, 175–196 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Angenent, S.: Shrinking doughnuts. In: Lloyd, N.G., Ni, W.M., Peletier, L.A., Serrin, J. (eds.) Nonlinear Diffusion Equations and Their Equilibrium States, vol. 7, pp. 21–38. Birkhaüser, Boston, Basel, Berlin (1992)

    Chapter  Google Scholar 

  3. Barbosa, J.L., do Carmo, M.: Stability of hypersurfaces with constant mean curvature. Math. Z. 185, 339–353 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cao, H.-D., Li, H.: A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension. Calc. Var. Partial Differ. Equ. 46, 879–889 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chang, J.-E.: One dimensional solutions of the \(\lambda \)-self shrinkers. arXiv:1410.1782

  6. Cheng, Q.-M., Peng, Y.: Complete self-shrinkers of the mean curvature flow. Calc. Var. Partial Differ. Equ. 52, 497–506 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cheng, Q.-M., Wei, G.: Compact embedded \(\lambda \)-torus in Euclidean spaces. arXiv:1512.04752

  8. Colding, T.H., Minicozzi II, W.P.: Generic mean curvature flow I: generic singularities. Ann. Math. 175, 755–833 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ding, Q., Xin, Y.L.: The rigidity theorems of self shrinkers. Trans. Am. Math. Soc. 366, 5067–5085 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Drugan, G.: An immersed \(S^2\) self-shrinker. Trans. Am. Math. Soc. 367, 3139–3159 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ecker, K., Huisken, G.: Mean curvature evolution of entire graphs. Ann. Math. 130, 453–471 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guan, P., Li, J.: A mean curvature type flow in space forms. Int. Math. Res. Not. 2015, 4716–4740 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huisken, G.: Flow by mean curvature of convex surfaces into spheres. J. Differ. Geom. 22, 237–266 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Huisken, G.: The volume preserving mean curvature flow. J. Reine Angew. Math. 382, 35–48 (1987)

    MathSciNet  MATH  Google Scholar 

  15. Huisken, G.: Asymptotic behavior for singularities of the mean curvature flow. J. Differ. Geom. 31, 285–299 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Huisken, G.: Local and global behaviour of hypersurfaces moving by mean curvature, Differential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990), 175C191, Proceedings of Symposium on Pure Mathematics, 54, Part 1, American Mathematical Society, Providence, RI (1993)

  17. Kapouleas, N., Kleene, S.J., Møller, N.M.: Mean curvature self-shrinkers of high genus: non-compact examples. J. Reine Angew. Math. (2015). https://doi.org/10.1515/crelle-2015-0050

    Google Scholar 

  18. Kleene, S., Møller, N.M.: Self-shrinkers with a rotation symmetry. Trans. Am. Math. Soc. 366, 3943–3963 (2014)

    Article  MATH  Google Scholar 

  19. Lawson, H.B.: Local rigidity theorem for minimal surfaces. Ann. Math. 89, 187–197 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  20. Le, N.Q., Sesum, N.: Blow-up rate of the mean curvature during the mean curvature flow and a gap theorem for self-shrinkers. Commun. Anal. Geom. 19, 1–27 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, H., Wei, Y.: Classification and rigidity of self-shrinkers in the mean curvature flow. J. Math. Soc. Jpn. 66, 709–734 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Møller, N.M.: Closed self-shrinking surfaces in \({\mathbb{R}}^3\) via the torus. arXiv:1111.7318

  23. Nguyen, X.H.: Construction of complete embedded self-similar surfaces under mean curvature flow. Part I. Trans. Am. Math. Soc. 361, 1683–1701 (2009)

    Article  MATH  Google Scholar 

  24. Nguyen, X.H.: Construction of complete embedded self-similar surfaces under mean curvature flow. Part II. Adv. Differ. Equ. 15, 503–530 (2010)

    MATH  Google Scholar 

  25. Nguyen, X.H.: Construction of complete embedded self-similar surfaces under mean curvature flow. Part III. Duke Math. J. 163, 2023–2056 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schoen, R.M., Simon, L.M., Yau, S.T.: Curvature estimates for minimal hypersurfaces. Acta Math. 134, 275–288 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  27. White, B.: Stratification of minimal surfaces, mean curvature flows, and harmonic maps. J. Reine Angew. Math. 488, 1–35 (1997)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

A part of this work was finished when the first author visited Beijing Normal University. We would like to express our gratitude to Professor Zizhou Tang and Dr. Wenjiao Yan for warm hospitality. We would also like to thank the referee for invaluable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoxin Wei.

Additional information

Communicated by J. Jost.

Qing-Ming Cheng was partially supported by JSPS Grant-in-Aid for Scientific Research (B): No. 16H03937. Guoxin Wei was partially supported by NSFC Grant Nos. 11771154, 11371150.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, QM., Wei, G. Complete \(\lambda \)-hypersurfaces of weighted volume-preserving mean curvature flow. Calc. Var. 57, 32 (2018). https://doi.org/10.1007/s00526-018-1303-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1303-4

Mathematics Subject Classification

Navigation