Skip to main content
Log in

Flatness implies smoothness for solutions of the porous medium equation

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

One of the major problems in the theory of the porous medium equation \(\partial _t\rho =\Delta _x\rho ^m,\,m > 1\), is the regularity of the solutions \(\rho (t,x)\ge 0\) and the free boundaries \(\Gamma =\partial \{(t,x): \rho >0\}\). Here we assume flatness of the solution and derive \(C^\infty \) regularity of the interface after a small time, as well as \(C^\infty \) regularity of the solution in the positivity set and up to the free boundary for some time interval. The proof starts from Caffarelli’s blueprint of an improvement of flatness by rescaling, and combines it with the Carleson measure approach applied to the degenerate subelliptic equation satisfied by the pressure of the porous medium equation in transformed coordinates. The improvement of flatness finally hinges on Gaussian estimates for the subelliptic problem. We use these facts to prove the following eventual regularity result: solutions defined in the whole space with compactly supported initial data are smooth after a finite time \(T_r\) that depends on \(\rho _0\). More precisely, we prove that for \(t \ge T_r\) the pressure \(\rho ^{m-1}\) is \(C^\infty \) in the positivity set and up to the free boundary, which is a \(C^\infty \) hypersurface. Moreover, \(T_r\) can be estimated in terms of only the initial mass and the initial support radius. This regularity result eliminates the assumption of non-degeneracy on the initial data that has been carried on for decades in the literature. Let us recall that regularization for small times is false, and that as \(t\rightarrow \infty \) the solution increasingly resembles a Barenblatt function and the support looks like a ball.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angenent, S.B.: Large-time asymptotics of the porous media equation. In: Ni, W.-M., Peletier, L.A., Serrin, J. (eds.) Nonlinear Diffusion Equations and their Equilibrium States I, vol. 12. Springer, Berlin (1988)

    Chapter  Google Scholar 

  2. Angenent, S.B., Aronson, D.G.: The focusing problem for the radially symmetric porous medium equation. Commun. Partial Differ. Equ. 20, 1217–1240 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aronson, D.G.: The porous medium equation. In: Fasano, A., Primicerio, M. (eds.) Nonlinear Diffusion Problems, pp. 1–46. Springer, Berlin (1986)

    Google Scholar 

  4. Aronson, D.G., Caffarelli, L.A.: The initial trace of a solution of the porous medium equation. Trans. Am. Math. Soc. 280, 351–366 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aronson, D.G., Graveleau, J.A.: Self-similar solution to the focusing problem for the porous medium equation. Eur. J. Appl. Math. 4(1), 65–81 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Athanasopoulos, I., Caffarelli, L.A., Salsa, S.: Phase transition problems of parabolic type: flat free boundaries are smooth. Commun. Pure Appl. Math. 51(1), 77–112 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Aronson, D.G., Vázquez, J.L.: Eventual \(C^{\infty }\)-regularity and concavity of flows in one-dimensional porous media. Arch. Ration. Mech. Anal. 99, 329–348 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bénilan, P., Crandall, M.G., Pierre, M.: Solutions of the porous medium in \(\mathbb{R}^n\) under optimal conditions on the initial values. Indiana Univ. Math. J. 33, 51–87 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Caffarelli, L.A.: A Harnack inequality approach to the regularity of free boundaries. Part I: Lipschitz free boundaries are \(C^{1,\alpha }\). Rev. Mat. Iberoam. 3(2), 139–162 (1987)

    Article  MATH  Google Scholar 

  10. Caffarelli, L.A.: A Harnack inequality approach to the regularity of free boundaries. Part II: flat free boundaries are Lipschitz. Commun. Pure Appl. Math. 42(1), 55–78 (1989)

    Article  MATH  Google Scholar 

  11. Caffarelli, L.A.: Regularity of the free boundary of a gas flow in an \(n\)-dimensional porous medium. Indiana Univ. Math. J. 29, 361–391 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  12. Caffarelli, L.A., Vázquez, J.L., Wolanski, N.I.: Lipschitz continuity of solutions and interfaces of the \(N\)-dimensional porous medium equation. Indiana Univ. Math. J. 36(2), 373–401 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Caffarelli, L.A., Wolanski, N.I.: \(C^{1,\alpha }\) regularity of the free boundary for the N-dimensional porous media equation. Commun. Pure Appl. Math. 43(7), 885–902 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Carrillo, J.A., Toscani, G.: Asymptotic \(L^1\)-decay of solutions of the porous medium equation to self-similarity. Indiana Univ. Math. J. 49, 113–141 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Daskalopoulos, P., Hamilton, R.: Regularity of the free boundary for the porous medium equation. J. Am. Math. Soc. 11(4), 899–965 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Daskalopoulos, P., Hamilton, R., Lee, K.-A.: All time \(C^\infty \)-regularity of the interface in degenerate diffusion: a geometric approach. Duke Math. J. 108(2), 295–327 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge University Press, Cambridge (1989)

    Book  MATH  Google Scholar 

  18. Friedman, A.: Partial Differential Equations. Holt, Rinehart, and Winston, New York (1969)

    MATH  Google Scholar 

  19. Kienzler, C.: Flat Fronts and Stability for the Porous Medium Equation, Dissertation (2013)

  20. Kienzler, C.: Flat Fronts and Stability for the Porous Medium Equation. arxiv:1403.5811 (2014)

  21. Koch, H.: Non-Euclidean Singular Integrals and the Porous Medium Equation. Habilitation. Ruprecht-Karls-Universität Heidelberg, Heidelberg (1999)

    Google Scholar 

  22. Koch, H., Lamm, T.: Geometric flows with rough initial data. Asian J. Math. 16(2), 209–235 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Koch, H., Tataru, D.: Well-posedness for the Navier–Stokes equations. Adv. Math. 157(1), 22–35 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lee, K.-A., Vázquez, J.L.: Geometrical properties of solutions of the Porous Medium Equation for large times. Indiana Univ. Math. J. 52(4), 991–1016 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ladyzhenskaya, O.A., Ural’ceva, N.N., Solonnikov, V.A.: Linear and Quasi-Linear Equations of Parabolic Type. American Mathematical Society, Providence (1975)

    Google Scholar 

  26. Seis, C.: Long-time asymptotics for the porous medium equation: the spectrum of the linearized operator. J. Differ. Equ. 256(3), 1191–1223 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Seis, C.: Invariant Manifolds for the Porous Medium Equation. arXiv:1505.06657

  28. Vázquez, J.L.: Symétrisation pour \(u_t=\Delta \varphi (u)\) et applications. C. R. Acad. Sc. Paris 295, 71–74 (1982)

    Google Scholar 

  29. Vázquez, J.L.: Asymptotic behaviour for the porous medium equation posed in the whole space. J. Evol. Equ. 3(1), 67–118 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Vázquez, J.L.: Smoothing and Decay Estimates for Nonlinear Diffusion Equations. Equations of Porous Medium Type, Oxford Lecture Series. Oxford University Press, Oxford (2006)

    Book  Google Scholar 

  31. Vázquez, J.L.: The porous medium equation. Mathematical theory, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford (2007)

    Google Scholar 

Download references

Acknowledgements

H. Koch and C. Kienzler have been supported by Hausdorff Center for Mathematics in Bonn. The last author was supported by projects MTM2011-24696 and MTM2014-52240-P (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Luis Vázquez.

Additional information

Communicated by L. Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kienzler, C., Koch, H. & Vázquez, J.L. Flatness implies smoothness for solutions of the porous medium equation. Calc. Var. 57, 18 (2018). https://doi.org/10.1007/s00526-017-1296-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-017-1296-4

Mathematics Subject Classification

Navigation