Skip to main content
Log in

On inverse mean curvature flow in Schwarzschild space and Kottler space

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we first study the behavior of inverse mean curvature flow in Schwarzschild manifold. We show that if the initial hypersurface \(\Sigma \) is strictly mean convex and star-shaped, then the flow hypersurface \(\Sigma _t\) converges to a large coordinate sphere as \(t\rightarrow \infty \) exponentially. We also describe an application of this convergence result. In the second part of this paper, we will analyse the inverse mean curvature flow in Kottler–Schwarzschild manifold. By deriving a lower bound for the mean curvature on the flow hypersurface independently of the initial mean curvature, we can use an approximation argument to show the global existence and regularity of the smooth inverse mean curvature flow for star-shaped and weakly mean convex initial hypersurface, which generalizes Huisken–Ilmanen’s (J Differ Geom 80:433–451, 2008) result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bray, H., Neves, A.: Classification of prime 3-manifolds with Yamabe invariant greater than \({\mathbb{RP}}^3\). Ann. Math. 159, 407–424 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brendle, S.: Constant mean curvature surfaces in warped product manifolds. Publications Mathématiques de l’IHÉS 117, 247–269 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brendle, S., Hung, P.-K., Wang, M.-T.: A Minkowski-type inequality for hypersurfaces in the Anti-deSitter–Schwarzschild manifold. Commun. Pure Appl. Math. 69(1), 124–144 (2016)

    Article  MATH  Google Scholar 

  4. De lima, L.L., Girão, F.: An Alexandrov–Fenchel-type inequality in hyperbolic space with an application to a penrose inequality. Ann. Henri Poincaré 17(4), 979–1002 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. De Lima, L.L., Girão, F.: A Penrose inequality for asymptotically locally hyperbolic graphs. arXiv:1304.7887

  6. Ding, Q.: The inverse mean curvature flow in rotationally symmetric spaces. Chin. Ann. Math. Ser. B 32(1), 27–44 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gerhardt, C.: Flow of nonconvex hypersurfaces into spheres. J. Differ. Geom. 32, 299–314 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gerhardt, C.: Curvature Problems, Ser. in Geom. and Topol., vol. 39. International Press, Somerville (2006)

    Google Scholar 

  9. Gerhardt, C.: Inverse curvature flows in hyperbolic space. J. Differ. Geom. 89(3), 487–527 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gerhardt, C.: Curvature flows in the sphere. J. Differ. Geom. 100, 301–347 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guan, P., Li, J.: The quermassintegral inequalities for k-convex starshaped domains. Adv. Math. 221, 1725–1732 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ge, Y., Wang, G., Wu, J.: Hyperbolic Alexandrov–Fenchel quermassintegral inequalities II. J. Differ. Geom. 98(2), 237–260 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ge, Y., Wang, G., Wu, J., Xia, C.: A Penrose inequality for graphs over Kottler space. Calc. Var. PDE 52, 755–782 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hamilton, R.S.: Four-manifolds with positive curvature operator. J. Differ. Geom. 24, 153–179 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Huisken, G.: Flow by mean curvature of convex surfaces into spheres. J. Differ. Geom. 20, 237–266 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  16. Huisken, G.: Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature. Invent. math. 84(3), 463–480 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Huisken, G., Ilmanen, T.: The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differ. Geom. 59, 353–438 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huisken, G., Ilmanen, T.: Higher regularity of the inverse mean curvature flow. J. Differ. Geom. 80, 433–451 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Krylov, N.V.: Nonlinear Elliptic and Parabolic Equations of the Second Order. Reidel, Dordrecht (1987)

    Book  MATH  Google Scholar 

  20. Lee, D.A., Neves, A.: The Penrose inequality for asymptotically locally hyperbolic spaces with nonpositive mass. Commun. Math. Phys. 339, 327–352 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, H., Wei, Y., Xiong, C.: A geometric inequality on hypersurface in hyperbolic space. Adv. Math. 253, 152–162 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, H., Wei, Y., Xiong, C.: Erratum: A note on Weingarten hypersurface in the warped product manifold. Intern. J. Math 27(13), 1692001 (2016)

    Article  MATH  Google Scholar 

  23. Makowski, M., Scheuer, J.: Rigidity results, inverse curvature flows and Alexandrov–Fenchel type inequalities in the sphere. Asian J. Math. 20(5), 869–892 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Neves, A.: Insufficient convergence of inverse mean curvature flow on asymptotically hyperbolic manifolds. J. Differ. Geom. 84(1), 191–229 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Petersen, P.: Riemannian Geometry, GTM 171, 2nd edn. Springer, New York (2006)

    Google Scholar 

  26. Scheuer, J.: The inverse mean curvature flow in warped cylinders of non-positive radial curvature. Adv. Math. 306, 1130–1163 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Urbas, J.: On the expansion of star-shaped hypersurfaces by symmetric functions of their principal curvatures. Math. Z. 205, 355–372 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wei, Y., Xiong, C.: Inequalities of Alexandrov–Fenchel type for convex hypersurfaces in hyperbolic space and in the sphere. Pacific J. Math. 277(1), 219–239 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for carefully reading and useful comments. The first author was supported by NSFC No. 11671224, the second author was supported by Jason D. Lotay through his EPSRC Grant EP/K010980/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wei.

Additional information

Communicated by A. Neves.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Wei, Y. On inverse mean curvature flow in Schwarzschild space and Kottler space. Calc. Var. 56, 62 (2017). https://doi.org/10.1007/s00526-017-1160-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-017-1160-6

Mathematics Subject Classification

Navigation