Skip to main content
Log in

Discreteness of interior transmission eigenvalues revisited

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

This paper is devoted to the discreteness of the transmission eigenvalue problems. It is known that this problem is not self-adjoint and a priori estimates are non-standard and do not hold in general. Two approaches are used. The first one is based on the multiplier technique and the second one is based on the Fourier analysis. The key point of the analysis is to establish the compactness and the uniqueness for Cauchy problems under various conditions. Using these approaches, we are able to rediscover quite a few known discreteness results in the literature and obtain various new results for which only the information near the boundary are required and there might be no contrast of the coefficients on the boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In this paper, this means that F is bijective and \(F, F^{-1} \in C^1 ({\bar{\Omega }})\).

  2. One can use two diffeomorphisms \(F_1, \, F_2\) and require the corresponding conditions on \(({F_1}_*A_1, {F_1}_*\Sigma _1)\) and \(({F_2}_*A_2, {F_2}_*\Sigma _2)\) to obtain the discreteness of the ITE problem. However, the same conditions hold by using the diffeomorphisms \(F_1\circ F_2^{-1}, \, I\).

  3. In fact, [23, Lemma 7] is stated for \((u_n) \subset H^1(\Omega )\), however the result also holds for \((u_n) \subset H^1_{_{loc}}(\Omega )\) and the proof is almost unchanged.

  4. The goal is to eliminate \(\Sigma _1 u_2\) from the equation of \({\hat{w}}\).

  5. In Proposition 4, \(G_1 = 0\); nevertheless, the same proof gives the same result in the case \(G_1 \in L^2(\Omega )\) with \({\text {supp}}G_1 \subset \subset \Omega \).

References

  1. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II. Commun. Pure Appl. Math. 17, 35–92 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blåsten, E., Paivarinta, L.: Completeness of generalized transmission eigenstates. Inverse Probl. 29, 104002 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bonnet-BenDhia, A.S., Chesnel, L., Haddar, H.: On the use of T-coercivity to study the interior transmission eigenvalue problem. C. R. Math. Acad. Sci. Paris 349, 647–651 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universititex, Springer, Berlin (2010)

    Book  Google Scholar 

  5. Cakoni, F., Colton, D., Haddar, H.: The linear sampling method for anisotropic media. J. Comput. Appl. Math. 146, 285–299 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cakoni, F., Haddar, H.: Transmission eigenvalues in inverse scattering theory. Inside Out 60, 529–580 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Colton, D., Monk, P.: The inverse scattering problem for acoustic waves in an inhomogeneous medium. Quart. J. Mech. Appl. Math. 41, 97–125 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Colton, D., Kirsch, A., Paivarinta, L.: Far-field patterns for acoustic waves in an inhomogeneous medium. SIAM J. Math. Anal. 20, 1472–1483 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Colton, D., Paivarinta, L.: Transmission eigenvalues and a problem of Hans Lewy. J. Comput. Appl. Math. 117, 91–104 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Faierman, M.: Eigenvalue asymptotics for a boundary problem involving an elliptic system. Math. Nachr. 279, 1159–1184 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Haddar, H., Joly, P., Nguyen, H.-M.: Generalized impedance boundary conditions for scattering by strongly absorbing obstacles: the scalar case. Math. Models Methods Appl. Sci. 15, 1273–1300 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hitrik, M., Krupchyk, K., Ola, P., Paivarinta, L.: The interior transmission problem and bounds on transmission eigenvalues. Math. Res. Lett. 18, 279–293 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kirsch, A.: The denseness of the far field patterns for the transmission problem. IMA J. Appl. Math. 37, 213–225 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lakshtanov, E., Vainberg, B.: Ellipticity in the interior transmission problem in anisotropic media. SIAM J. Math. Anal. 44, 1165–1174 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lakshtanov, E., Vainberg, B.: Applications of elliptic opeator theory to the isotropic interior transmission eigenvalue problem. Inverse Probl. 29, 104003 (2013)

    Article  MATH  Google Scholar 

  16. Robbiano, L.: Spectral analysis on interior transmission eigenvalues. Inverse Probl. 29, 104001 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lopatinskii, Y.B.: On a method of reducing boundary problems for a system of differential equations of elliptic type to regular integral equations. Ukrain. Mat. Z 5, 123–151 (1953)

    MathSciNet  Google Scholar 

  18. Nguyen, H.-M.: Asymptotic behavior of solutions to the Helmholtz equations with sign changing coefficients. Trans. Am. Math. Soc. 367, 6581–6595 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nguyen, H.-M.: Superlensing using complementary media. Ann. Inst. H. Poincaré Anal. Non Linéaire 32, 471–484 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nguyen, H.-M.: Cloaking via anomalous localized resonance. A connection between the localized resonance and the blow up of the power for doubly complementary media. C. R. Math. Acad. Sci. Paris 353, 41–46 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nguyen, H.-M.: Cloaking via anomalous localized resonance for doubly complementary media in the quasi static regime. J. Eur. Math. Soc. 17, 1327–1365 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nguyen, H-M.: Cloaking using complementary media in the quasistatic regime. Ann. Inst. H. Poincaré Anal. Non Linéaire. 33, 1509–1518 (2016)

  23. Nguyen, H.-M.: Limiting absorption principle and well-posedness for the Helmholtz equation wiht sign changing coefficients. J. Math. Pures Appl. 106, 342–374 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nguyen, H-M: Cloaking via anomalous localized resonance for doubly complementary media in the finite frequency regime. arXiv:org/abs/1511.08053

  25. Nguyen, H-M.: Cloaking an arbitrary object via anomalous localized resonance: the cloak is independent of the object: the acoustic case. arXiv.1607.06492

  26. Nguyen, H.-M., Nguyen, H .L.: Cloaking using complementary media for the Helmholtz equation and a three spheres inequality for second order elliptic equations. Trans. Am. Math. Soc. Ser. B 2, 93–112 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Renardy, M., Rogers, R.C.: An introduction to partial differential equations. In: Texts in Applied Mathematics, vol. 13, 2nd ed. Springer, New York (2004)

  28. Rynne, B.P., Sleeman, B.D.: The interior transmission problem and inverse scattering from inhomogeneous media. SIAM J. Math. Anal. 22, 1755–1762 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sylvester, J.: Discreteness of transmission eigenvalues via upper triangular compact operators. SIAM J. Math. Anal. 44, 341–354 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoai-Minh Nguyen.

Additional information

Communicated by P. Rabinowitz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, HM., Nguyen, QH. Discreteness of interior transmission eigenvalues revisited. Calc. Var. 56, 51 (2017). https://doi.org/10.1007/s00526-017-1143-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-017-1143-7

Mathematics Subject Classification

Navigation