Skip to main content
Log in

A scalar curvature flow in low dimensions

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Let \(M^{n}\) be a \(n=3,4,5\) dimensional, closed Riemannian manifold of positive Yamabe invariant. For a smooth function \(K>0\) on M we consider a conformal flow, that tends to prescribe K as the scalar curvature of a conformal metric. We show global existence and if M is not conformally equivalent to the standard sphere smooth convergence and solubility of the prescribed scalar curvature problem under suitable conditions on K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, T.: Equations differentielles non lineaires et probleme de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. 55(3), 269–296 (1976)

    MathSciNet  MATH  Google Scholar 

  2. Bahri, A.: Critical points at infinity in some variational problems. Pitman Research Notes in Mathematics Series, vol. 182. Longman Scientific & Technical, (1989)

  3. Bahri, A.: Proof of the Yamabe conjecture, without the positive mass theorem, for locally conformally flat manifolds Einstein metrics and Yang–Mills connections (Sanda, 1990), 1–26, Lecture Notes in Pure and Appl. Math., vol. 145, Dekker, New York, (1993)

  4. Bahri, A., Coron, J.-M.: On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain Comm. Pure Appl. Math. 41(3), 253–294 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ben Ayed, M., Ould Ahmedou, M.: Multiplicity results for the prescribed scalar curvature on low spheres. Ann. Sc. Norm. Super. Pisa Cl. Sci. 7(4), 609–634 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Brendle, S.: Convergence of the Yamabe flow for arbitrary initial energy. J. Differential Geom. 69(2), 217–278 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, X., Xu, X.: The scalar curvature flow on \(S^{n}\)—perturbation theorem revisited. Invent. Math. 187(2), 395–506 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Escobar, Jose F., Schoen, Richard M.: Conformal metrics with prescribed scalar curvature. Invent. Math. 86(2), 243–254 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Günther, M.: Conformal normal coordinates. Ann. Global Anal. Geom. 11(2), 173–184 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lee, J.M., Parker, T.H.: The Yamabe problem. Bull. Amer. Math. Soc. (N.S.) 17(1), 37–91 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, Y.: Prescribing scalar curvature on \(\mathbf{S}^n\) and related problems Part I. J. Differential Equ. 120, 319–410 (1995)

    Article  Google Scholar 

  12. Li, Y.: Prescribing scalar curvature on \({\mathbf{S}}^{n}\) and related problems, Part II. Comm. Pure Appl. Math. 49(6), 541–597 (1996)

    Article  MathSciNet  Google Scholar 

  13. Schoen, R.: Conformal deformation of a Riemannian metric to constant scalar curvature. J. Differ. Geom. 20, 479–496 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Struwe, M.: A global compactness result for elliptic boundary value problems involving limiting nonlinearities. Math. Z. 187(4), 511–517 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Schwetlick, H., Struwe, M.: Convergence of the Yamabe flow for “large” energies. J. Reine Angew. Math. 562, 59–100 (2003)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Mayer.

Additional information

Communicated by A. Malchiodi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayer, M. A scalar curvature flow in low dimensions. Calc. Var. 56, 24 (2017). https://doi.org/10.1007/s00526-017-1118-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-017-1118-8

Mathematics Subject Classification

Navigation