Skip to main content
Log in

Solutions concentrating around the saddle points of the potential for critical Schrödinger equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider the following singularly perturbed nonlinear elliptic problem

$$\begin{aligned} -\varepsilon ^2\Delta u+V(x)u=f(u),\ u\in H^1({\mathbb {R}}^N), \quad N\ge 3, \end{aligned}$$

where f is of critical growth. Using the variational techniques, we construct a solution \(u_\varepsilon \) which concentrates around the saddle points of V as \(\varepsilon \rightarrow 0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti, A., Badiale, M., Cingolani, S.: Semiclassical states of nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 140, 285–300 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ambrosetti, A., Malchiodi, A., Ni, W.-M.: Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres I. Commun. Math. Phys. 235, 427–466 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ackermann, N., Weth, T.: Multibump solutions to nonlinear periodic Schrödinger equations in a degenerate setting. Commun. Contemp. Math. 7, 269–298 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berestycki, H., Lions, P.L.: Nonlinear scalar field equations I. Existence of a ground state. Arch. Ration. Mech. Anal. 82, 313–346 (1983)

    MATH  MathSciNet  Google Scholar 

  5. Benci, V., Cerami, G.: Existence of positive solutions of the e quation \(-\Delta u+a(x)u=u^{\frac{N+2}{N-2}}\) in \(\mathbb{R}^N\). J. Funct. Anal. 88, 90–117 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Byeon, J., Jeanjean, L.: Standing waves for nonlinear Schrödinger equations with a general nonlinearity. Arch. Ration. Mech. Anal. 185, 185–200 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Byeon, J., Tanaka, K.: Semi-classical standing waves for nonlinear Schrödinger equations at structurally stable critical points of the potential. J. Eur. Math. Soc. 15, 1859–1899 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Byeon, J., Tanaka, K.: Semiclassical standing waves with clustering peaks for nonlinear Schrödinger equations. Memories of the American Mathematical Society, vol. 229, no. 1076. American Mathematical Society, Providence (2014)

  9. Byeon, J., Zhang, J., Zou, W.: Singularly perturbed nonlinear Dirichlet problems involving critical growth. Calc. Var. Partial Differ. Equ. 47, 65–85 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chabrowski, J.: Weak Convergence Methods for Semilinear Elliptic Equations. World Scientific, Singapore (1999)

    Book  MATH  Google Scholar 

  11. Cortá, C., Elgueta, M., Felmer, P.: Uniqueness of positive solutions of \(\Delta u+f(u)=0\) in \(\beta R^N, N\ge 3\). Arch. Ration. Mech. Anal. 142, 127–141 (1998)

  12. d’Avenia, P., Pomponio, A., Ruiz, D.: Semiclassical states for the nonlinear Schrödinger equation on saddle points of the potential via variational methods. J. Funct. Anal. 262, 4600–4633 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dancer, E.N.: Peak solutions without non-degeneracy conditions. J. Differ. Equ. 246, 3077–3088 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Evequoz, G., Weth, T.: Entire solutions to nonlinear scalar field equations with indefinite linear part. Adv. Nonlinear Stud. 12, 281–314 (2012)

    MathSciNet  Google Scholar 

  15. Floer, A., Weinstein, A.: Nonspreading wave packets for the cubic Schrödinger equations with a bounded potential. J. Funct. Anal. 69, 397–408 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case: Part II. Ann. Inst. H. Poincaré Anal. 1, 223–283 (1984)

    MATH  Google Scholar 

  17. Li, Y.Y.: On a singularly perturbed elliptic equation. Adv. Differ. Equ. 2, 955–980 (1997)

    MATH  Google Scholar 

  18. Oh, Y.G.: Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class \((V)_a\). Commun. Partial Differ. Equ. 13, 1499–1519 (1988)

    Article  MATH  Google Scholar 

  19. del Pino, M., Kowalczyk, M., Wei, J.: Concentration on curves for nonlinear Schrödinger equations. Commun. Pure Appl. Math. 60, 113–146 (2007)

    Article  MATH  Google Scholar 

  20. del Pino, M., Felmer, P.: Local mountain passes for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differ. Equ. 4, 121–137 (1996)

    Article  MATH  Google Scholar 

  21. del Pino, M., Felmer, P.: Multi-peak bound states of nonlinear Schrödinger equations. Ann. Inst. H. Poincaréaire 15, 127–149 (1998)

    Article  MATH  Google Scholar 

  22. del Pino, M., Felmer, P.: Semi-classical states for nonlinear Schrödinger equations. J. Funct. Anal. 149, 245–265 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  23. del Pino, M., Felmer, P.: Semi-classical states for nonlinear Schrödinger equations: a variational reduction method. Math. Ann. 324, 1–322 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Pohozaev, S.I.: On the eigenfunctions of the equation \(\Delta u+\lambda f(u)=0\). Dokl. Akad. Nauk SSSR 165, 36–39 (1965). (in Russian)

    MathSciNet  Google Scholar 

  25. Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270–291 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  26. Ramos, M., Wang, Z.-Q., Willem, M.: Positive Solutions for Elliptic Equations with Critical Growth in Unbounded Domains, Calculus of Variations and Differential Equations. Chapman & Hall/CRC Press, Boca Raton (2000)

    Google Scholar 

  27. Wang, X.: On concentration of positive bound states of nonlinear Schrödinger equations. Commun. Math. Phys. 153, 229–244 (2003)

    Article  Google Scholar 

  28. Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)

    Book  MATH  Google Scholar 

  29. Zhang, J., Chen, Z., Zou, W.: Standing waves for nonlinear Schrödinger equations involving critical growth. J. Lond. Math. Soc. 90, 827–844 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  30. Zhang, J., Zou, W.: A Berestycki–Lions theorem revisited. Commun. Contemp. Math. 14, 1250033 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are deeply grateful to Professor Zhi-Qiang Wang for his kind support and fruitful discussion. They also would like to express their sincere gratitude to the anonymous referee for his/her careful reading and valuable suggestions. J. Zhang also thanks Dr. Zhijie Chen for his valuable comment on the proof of Lemma 4.7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenming Zou.

Additional information

Communicated by P. Rabinowitz.

Supported by the China Postdoctoral Science Foundation (2013M530868), NSFC (11025106, 11371212, 11271386) and the Both-Side Tsinghua Fund.

Appendix: A splitting Lemma

Appendix: A splitting Lemma

This section is devoted to the proof of Lemma 4.7. The proof is similar to that in [14]. A similar result also can be found in [3]. However, in [3, 14], only the subcritical case was considered and the decay property of u at infinity was required, i.e., \(u(x)\rightarrow 0\) as \(|x|\rightarrow \infty \). In this appendix, the nonlinear term f may involve the critical growth and the decay property of u at infinity is removed.

Proof of Lemma 4.7

It suffices to prove that

$$\begin{aligned} \int _{\mathbb R^N}\big (f_1(u_k)-f_1(u)-f_1(u_k-u)\big )\phi =o_k(1)\Vert \phi \Vert , \end{aligned}$$

where \(f_1\) is given in Sect. 2.

In the following, we denote by C the positive constants, which are independent of \(\varepsilon ,k\) and possibly different. For any fixed \(\varepsilon >0\), by \((f_1)\), we can choose \(s_0=s_0(\varepsilon )\in (0,1)\) such that \(|f_1(t)|\le \varepsilon |t|\) for \(|t|\le 2s_0\). By \((f_2)\), choosing \(s_1=s_1(\varepsilon )>2\) such that \(|f_1(t)|\le \varepsilon |t|^{2^{*}-1}\) for \(|t|\ge s_1-1\). From the continuity of f, there exists \(\delta =\delta (\varepsilon )\in (0,s_0)\) such that \(|f_1(t_1)-f_1(t_2)|\le s_0\varepsilon \) for \(|t_1-t_2|\le \delta , |t_1|,|t_2|\le s_1+1\). Moreover, by \((f_2)\), there exists \(c(\varepsilon )>0\) such that \(|f_1(t)|\le c(\varepsilon )|t|+\varepsilon |t|^{2^{*}-1}\) for \(t\in \mathbb R\). Then there exists \(R=R(\varepsilon )>0\) such that \( \int _{\mathbb R^N{\setminus } B(0,R)}|f_1(u)\phi |\le C\varepsilon \Vert \phi \Vert \). Setting \(A_k:=\{x\in \mathbb R^N{\setminus } B(0,R): |u_k(x)|\le s_0\}\), then

$$\begin{aligned} \int _{A_k\cap \{u\le \delta \}}|f_1(u_k)-f_1(u_k-u)||\phi |\le \varepsilon (\Vert u_k\Vert _2+\Vert u_k-u\Vert _2)\Vert \phi \Vert _2\le C\varepsilon \Vert \phi \Vert . \end{aligned}$$

Let \(B_k:=\{x\in \mathbb R^N{\setminus } B(0,R): |u_k(x)|\ge s_1\}\), then

$$\begin{aligned} \int _{B_k\cap \{u\le \delta \}}|f_1(u_k)-f_1(u_k-u)||\phi |\le \varepsilon (\Vert u_k\Vert _{2^{*}}^{2^{*}}+\Vert u_k-u\Vert _{2^{*}}^{2^{*}})\Vert \phi \Vert _{2^{*}}\le C\varepsilon \Vert \phi \Vert . \end{aligned}$$

Setting \(C_k:=\{x\in \mathbb R^N{\setminus } B(0,R): s_0\le |u_k(x)|\le s_1\}\), by \(u_k\in H^1(\mathbb R^N)\), we know that \(|C_k|<\infty \). Then

$$\begin{aligned} \int _{C_k\cap \{u\le \delta \}}|f_1(u_k)-f_1(u_k-u)||\phi |\le s_0\varepsilon \Vert \phi \Vert _2|C_k|^{\frac{1}{2}}\le \varepsilon \Vert u_k\Vert _2\Vert \phi \Vert _2\le C\varepsilon \Vert \phi \Vert . \end{aligned}$$

Thus,

$$\begin{aligned} \int _{(\mathbb R^N{\setminus } B(0,R))\cap \{u\le \delta \}}|f_1(u_k)-f_1(u_k-u)||\phi |\le C\varepsilon \Vert \phi \Vert \ \ \text{ for } \text{ all }\ \ k. \end{aligned}$$

Noting that for all k,

$$\begin{aligned} |f_1(u_k)-f_1(u_k-u)|\le \varepsilon (|u_k|^{2^*-1}+|u_k-u|^{2^*-1})+c(\varepsilon )(|u_k|+|u_k-u|), \end{aligned}$$

and

$$\begin{aligned}&\int _{(\mathbb R^N{\setminus }B(0,R))\cap \{u\ge \delta \}}|f_1(u_k)-f_1(u_k-u)||\phi |\\&\quad \le \int _{(\mathbb R^N{\setminus }B(0,R))\cap \{u\ge \delta \}}\varepsilon (|u_k|^{2^*-1}+|u_k-u|^{2^*-1})|\phi |\\&\qquad +c(\varepsilon )(|u_k|+|u_k-u|)|\phi |\\&\quad \le C\varepsilon \Vert \phi \Vert +\int _{(\mathbb R^N{\setminus }B(0,R))\cap \{u\ge \delta \}}c(\varepsilon )(|u_k|+|u_k-u|)|\phi |. \end{aligned}$$

By \(u\in H^1(\mathbb R^N)\), we get that \(|(\mathbb R^N{\setminus }B(0,R))\cap \{u\ge \delta \}|\rightarrow 0\) as \(R\rightarrow \infty \). Then we can choose \(R=R(\varepsilon )\) large enough, such that

$$\begin{aligned}&\int _{(\mathbb R^N{\setminus }B(0,R))\cap \{u\ge \delta \}}c(\varepsilon )(|u_k|+|u_k-u|)|\phi |\\&\quad \le c(\varepsilon )(\Vert u_k\Vert _{2^*}+\Vert u_k-u\Vert _{2^*})\Vert \phi \Vert _{2^*}|(\mathbb R^N{\setminus }B(0,R))\cap \{u\ge \delta \}|^{\frac{2}{N}}\\&\quad \le \varepsilon \Vert \phi \Vert . \end{aligned}$$

So,

$$\begin{aligned} \int _{(\mathbb R^N{\setminus }B(0,R))\cap \{u\ge \delta \}}|f_1(u_k)-f_1(u_k-u)||\phi |\le C\varepsilon \Vert \phi \Vert \ \quad \text{ for } \text{ all }\ \ k. \end{aligned}$$

Thus,

$$\begin{aligned} \int _{\mathbb R^N{\setminus }B(0,R)}|f_1(u_k)-f_1(u)-f_1(u_k-u)||\phi |\le C\varepsilon \Vert \phi \Vert \ \quad \text{ for } \text{ all }\ \ k. \end{aligned}$$

Finally, since \(u_k\rightarrow u\) weakly in \(H^1(\mathbb R^N)\), up to a subsequence, \(u_k\rightarrow u\) strongly in \(L^2(B(0,R))\) and there exists \(\omega \in L^2(B(0,R))\) such that \(|u_k(x)|,|u(x)|\le |\omega (x)|\) a.e. \(x\in B(0,R)\). Then it is easy to check that

$$\begin{aligned} \int _{B(0,R)}|f_1(u_k-u)||\phi |\le C\varepsilon \Vert \phi \Vert \end{aligned}$$

for k large. Let \(D_k:=\{x\in B(0,R): |u_k(x)-u(x)|\ge 1\}\), then

$$\begin{aligned} \int _{D_k}|f_1(u_k)-f_1(u)||\phi |&\le \int _{D_k}[c(\varepsilon )(|u|+|u_k|)+\varepsilon (|u_k|^{2^{*}-1}+|u|^{2^{*}-1})]|\phi |\\&\le C\varepsilon \Vert \phi \Vert +2c(\varepsilon )\int _{D_k}|\omega ||\phi |\\&\le C\varepsilon \Vert \phi \Vert +2c(\varepsilon )\left( \int _{D_k}|\omega |^2\right) ^{\frac{1}{2}}\Vert \phi \Vert _2. \end{aligned}$$

By \(u_k\rightarrow u\) a.e. \(x\in B(0,R)\), we get that \(|D_k|\rightarrow 0\) as \(k\rightarrow \infty \). Hence,

$$\begin{aligned} \int _{D_k}|f_1(u_k)-f_1(u)||\phi |\le C\varepsilon \Vert \phi \Vert . \end{aligned}$$

Since \(u\in H^1(\mathbb R^N)\), we know \(|\{u\ge L\}|\rightarrow 0\) as \(L\rightarrow \infty \), then there exists \(L=L(\varepsilon )>0\) such that for all k,

$$\begin{aligned}&\int _{(B(0,R){\setminus }D_k)\cap \{u\ge L\}}|f_1(u_k)-f_1(u)||\phi |\\&\quad \le \int _{(B(0,R){\setminus }D_k)\cap \{u\ge L\}}\varepsilon (|u_k|^{2^*-1}+|u|^{2^*-1})|\phi |\\&\qquad +c(\varepsilon )(|u_k|+|u|)|\phi |\\&\quad \le C\varepsilon \Vert \phi \Vert +\int _{(B(0,R){\setminus }D_k)\cap \{u\ge L\}}c(\varepsilon )(|u_k|+|u|)|\phi |\\&\quad \le C\varepsilon \Vert \phi \Vert +c(\varepsilon )(\Vert u_k\Vert _{2^*}+\Vert u\Vert _{2^*})\Vert \phi \Vert _{2^*}|(B(0,R){\setminus }D_k)\cap \{u\ge L\}|^{\frac{2}{N}}\\&\quad \le C\varepsilon \Vert \phi \Vert . \end{aligned}$$

On the other hand, by the dominated convergence theorem,

$$\begin{aligned} \int _{(B(0,R){\setminus }D_k)\cap \{u\le L\}}|f_1(u_k)-f_1(u)|^2\rightarrow 0 \end{aligned}$$

as \(k\rightarrow \infty \). So,

$$\begin{aligned}\int _{(B(0,R){\setminus }D_k)\cap \{u\le L\}}|f_1(u_k)-f_1(u)||\phi |\le C\varepsilon \Vert \phi \Vert \end{aligned}$$

for k large enough. Thus,

$$\begin{aligned} \int _{B(0,R)}|f_1(u_k)-f_1(u)||\phi |\le C\varepsilon \Vert \phi \Vert . \end{aligned}$$

Then

$$\begin{aligned} \int _{B(0,R)}|f_1(u_k)-f_1(u)-f_1(u_k-u)||\phi |\le C\varepsilon \Vert \phi \Vert . \end{aligned}$$

Therefore,

$$\begin{aligned} \int _{\mathbb R^N}|f_1(u_k)-f_1(u)-f_1(u_k-u)||\phi |\le C\varepsilon \Vert \phi \Vert , \end{aligned}$$

for k large enough. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zou, W. Solutions concentrating around the saddle points of the potential for critical Schrödinger equations. Calc. Var. 54, 4119–4142 (2015). https://doi.org/10.1007/s00526-015-0933-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-015-0933-z

Mathematics Subject Classification

Navigation