Skip to main content
Log in

Abstract

We study the nodal set of the Steklov eigenfunctions on the boundary of a smooth bounded domain in \(\mathbb {R}^n\)- the eigenfunctions of the Dirichlet-to-Neumann map. Under the assumption that the domain \(\Omega \) is \(C^2\), we prove a doubling property for the eigenfunction \(u\). We estimate the Hausdorff \(\mathcal H^{n-2}\)-measure of the nodal set of \(u|_{\partial \Omega }\) in terms of the eigenvalue \(\lambda \) as \(\lambda \) grows to infinity. In case that the domain \(\Omega \) is analytic, we prove a polynomial bound O(\(\lambda ^6\)). Our arguments, which make heavy use of Almgren’s frequency functions, are built on the previous works [Garofalo and Lin, Commun Pure Appl Math 40(3):347–366, 1987; Lin, Commun Pure Appl Math 44(3):287–308, 1991].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almgren Jr., F.J.: Dirichlet’s problem for multiple valued functions and the regularity of mass minimizing integral currents. In: Minimal Submanifolds and Geodesics (Proc. Japan-United States Sem., Tokyo, 1977), pp. 1–6. North-Holland, Amsterdam (1979)

  2. Ammari, H., Kang, H., Lee, H., Lim, M.: Enhancement of near cloaking using generalized polarization tensors vanishing structures. Part I: The conductivity problem. Commun. Math. Phys. 317(1), 253–266 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bandle, C.: Über des Stekloffsche Eigenwertproblem: Isoperimetrische Ungleichungen für symmetrische Gebiete. Z. Angew. Math. Phys. 19, 627–637 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bañuelos, R., Kulczycki, T., Polterovich, I., Siudeja, B.: Eigenvalue inequalities for mixed Steklov problems. In: Operator theory and its applications. Am. Math. Soc. Transl. Ser. 2, vol. 231, pp. 19–34. Amer. Math. Soc., Providence (2010)

  5. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(7–9), 1245–1260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Caffarelli, L.A., Salsa, S., Silvestre, L.: Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. Invent. Math. 171(2), 425–461 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Calderón, A.P.: On an inverse boundary value problem. In: Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980), pp. 65–73. Soc. Brasil. Mat., Rio de Janeiro (1980)

  8. Chang, S.Y.A., González, M.d.M.: Fractional Laplacian in conformal geometry. Adv. Math. 226(2), 1410–1432 (2011)

  9. Chung, F.: Partial data for the neumann-to-dirichlet map. J. Fourier Anal. Appl. (online first)

  10. Dittmar, B.: Sums of reciprocal Stekloff eigenvalues. Math. Nachr. 268, 44–49 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Donnelly, H., Fefferman, C.: Nodal sets of eigenfunctions on Riemannian manifolds. Invent. Math. 93(1), 161–183 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Escobar, J.F.: Sharp constant in a Sobolev trace inequality. Indiana Univ. Math. J. 37(3), 687–698 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Escobar, J.F.: Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature on the boundary. Ann. Math. (2) 136(1), 1–50 (1992)

  14. Escobar, J.F.: The geometry of the first non-zero Stekloff eigenvalue. J. Funct. Anal. 150(2), 544–556 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Federer, H.: Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer, New York (1969)

  16. Fox, D.W., Kuttler, J.R.: Sloshing frequencies. Z. Angew. Math. Phys. 34(5), 668–696 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fraser, A., Schoen, R.: The first Steklov eigenvalue, conformal geometry, and minimal surfaces. Adv. Math. 226(5), 4011–4030 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fraser, A., Schoen, R.: Minimal surfaces and eigenvalue problems. In: Geometric analysis, mathematical relativity, and nonlinear partial differential equations. Contemp. Math., vol. 599, pp. 105–121. Amer. Math. Soc., Providence (2013)

  19. Garofalo, N., Lin, F.H.: Monotonicity properties of variational integrals, \(A_p\) weights and unique continuation. Indiana Univ. Math. J. 35(2), 245–268 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Garofalo, N., Lin, F.H.: Unique continuation for elliptic operators: a geometric-variational approach. Commun. Pure Appl. Math. 40(3), 347–366 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Grundlehren der Mathematischen Wissenschaften, vol. 224. Springer, Berlin (1977)

  22. Graham, C.R., Zworski, M.: Scattering matrix in conformal geometry. Invent. Math. 152(1), 89–118 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Han, Q.: Nodal sets of harmonic functions. Pure Appl. Math. Q. 3(3, part 2), 647–688 (2007)

  24. Han, Q., Lin, F.: Elliptic partial differential equations, Courant Lecture Notes in Mathematics, vol. 1. New York University Courant Institute of Mathematical Sciences, New York (1997)

    Google Scholar 

  25. Han, Q., Lin, F.H.: Nodal sets of solutions of elliptic differential equations (in preparation)

  26. Han, Q., Lin, F.H.: On the geometric measure of nodal sets of solutions. J. Partial Differ. Equ. 7(2), 111–131 (1994)

    MathSciNet  MATH  Google Scholar 

  27. Hardt, R., Simon, L.: Nodal sets for solutions of elliptic equations. J. Differ. Geom. 30(2), 505–522 (1989)

    MathSciNet  MATH  Google Scholar 

  28. Hersch, J., Payne, L.E., Schiffer, M.M.: Some inequalities for Stekloff eigenvalues. Arch. Ration. Mech. Anal. 57, 99–114 (1975)

    MathSciNet  Google Scholar 

  29. Hörmander, L.: The analysis of linear partial differential operators. III. Classics in Mathematics. Springer, Berlin (2007) (pseudo-differential operators, reprint of the 1994 edition)

  30. Kenig, C.E., Sjöstrand, J., Uhlmann, G.: The Calderón problem with partial data. Ann. Math. (2) 165(2), 567–591 (2007)

  31. Li, Y., Zhu, M.: Sharp Sobolev trace inequalities on Riemannian manifolds with boundaries. Commun. Pure Appl. Math. 50(5), 449–487 (1997)

    Article  MATH  Google Scholar 

  32. Li, Y.Y., Zhu, M.: Sharp Sobolev inequalities involving boundary terms. Geom. Funct. Anal. 8(1), 59–87 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lin, F.H.: Nodal sets of solutions of elliptic and parabolic equations. Commun. Pure Appl. Math. 44(3), 287–308 (1991)

    Article  MATH  Google Scholar 

  34. Lions, J.L., Magenes, E.: Non-homogeneous boundary value problems and applications, vol. III. Springer, New York (1973) (translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 193)

  35. Marques, F.C.: Conformal deformations to scalar-flat metrics with constant mean curvature on the boundary. Commun. Anal. Geom. 15(2), 381–405 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Nazarov, A.I., Kuznetsov, N.G., Poborchi, S.V.: V.a. steklov and the problem of sharp (exact) constants in inequalities of mathematical physics (2013, preprint). arXiv: 1307.8025

  37. Payne, L.E.: Some isoperimetric inequalities for harmonic functions. SIAM J. Math. Anal. 1, 354–359 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  38. Pleijel, Å.: Green’s functions and asymptotic distribution of eigenvalues and eigenfunctions. In: Proceedings of the Symposium on Spectral Theory and Differential Problems, pp. 439–454. Oklahoma Agricultural and Mechanical College, Stillwater (1951)

  39. Sandgren, L.: A vibration problem. Medd. Lunds Univ. Mat. Sem. 13, 1–84 (1955)

    MathSciNet  Google Scholar 

  40. Stekloff, W.: Sur les problèmes fondamentaux de la physique mathématique. Ann. Sci. École Norm. Sup. 3(19), 191–259 (1902)

    MathSciNet  Google Scholar 

  41. Sylvester, J., Uhlmann, G.: A global uniqueness theorem for an inverse boundary value problem. Ann. Math. (2) 125(1), 153–169 (1987)

  42. Toth, J.A., Zelditch, S.: Counting nodal lines which touch the boundary of an analytic domain. J. Differ. Geom. 81(3), 649–686 (2009)

    MathSciNet  MATH  Google Scholar 

  43. Weinstock, R.: Inequalities for a classical eigenvalue problem. J. Ration. Mech. Anal. 3, 745–753 (1954)

    MathSciNet  MATH  Google Scholar 

  44. Yau, S.T.: Problem section. In: Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, pp. 669–706. Princeton Univ. Press, Princeton (1982)

Download references

Acknowledgments

After our paper was submitted to Calculus of Variations and Partial Differential Equations and posted on arXiv, there has been recent progress on the topic. By very different methods, Steve Zelditch [Measure of nodal sets of analytic Steklov eigenfunctions, arXiv:1403.0647] obtained the optimal upper bound of \(C \lambda \) for the size of the \(\mathcal H^{n-2}\)-measure of the nodal set of Steklov eigenfunctions corresponding to \(\lambda \). Later Jiuyi Zhu [Doubling property and vanishing order of Steklov eigenfunctions, Commun. Partial Differ. Equ., to appear (doi:10.1080/03605302.2015.1025980)] improved the constant in our doubling condition to the optimal one and Angkana Rüland even removed the smallness assumption on the size of the balls on which it is valid, and hence also proved the optimal upper bound of the nodal set, even for more general problems [On some quantitative unique continuation properties of fractional Schrödinger equations: doubling, vanishing order and nodal domain estimates, arXiv:1407.0817]. Furthermore, Xing Wang and Jiuyi Zhu proved a polynomial lower bound of the nodal set under the assumption that 0 is a regular value for the Steklov eigenfunction [A Lower bound for the nodal sets of Steklov eigenfunctions, arXiv:1411.0708]. Also, it was brought to our attention that in 1994, Giovanni Alessandrini and Rolando Magnanini considered the Steklov problem in two dimensions in [Elliptic equations in divergence form, geometric critical points of solutions and Stekloff eigenfunctions, SIAM J. Math. Anal., 25 (5) (1994), 1259–1268]. It follows from their work that the \(n\)-th eigenfunction on the boundary of a simply-connected planar domain has at most \(2n\) nodal domains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarína Bellová.

Additional information

Communicated by L. Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellová, K., Lin, FH. Nodal sets of Steklov eigenfunctions. Calc. Var. 54, 2239–2268 (2015). https://doi.org/10.1007/s00526-015-0864-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-015-0864-8

Mathematics Subject Classification

Navigation