Skip to main content
Log in

On the finite space blow up of the solutions of the Swift–Hohenberg equation

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

The aim of this paper is to study the finite space blow up of the solutions for a class of fourth order differential equations. Our results answer a conjecture by Gazzola and Pavani (Arch Ration Mech Anal 207(2):717–752, 2013) and they have implications on the nonexistence of beam oscillation given by traveling wave profile at low speed propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. In the case of \(k\le 0\) it is easy to verify that \(\Phi \) is a convex function.

  2. In the case of \(k\le 0\), the inequality \(\Phi (m_j) < \Phi (z_j)\) is always satisfied. As a consequence \(N_1 = \emptyset \).

References

  1. Berchio, E., Ferrero, A., Gazzola, F., Karageorgis, P.: Qualitative behavior of global solutions to some nonlinear fourth order differential equations. J. Differ. Equ. 251(10), 2696–2727 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bonheure, D.: Multitransition kinks and pulses for fourth order equations with a bistable nonlinearity. Ann. Inst. H. Poincaré Anal. Non Linéaire 21(3), 319–340 (2004)

  3. Chen, Y., McKenna, P.J.: Traveling waves in a nonlinearly suspended beam: theoretical results and numerical observations. J. Differ. Equ. 136(2), 325–355 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Collet, P., Eckmann, J.-P.: Instabilities and Fronts in Extended Systems. Princeton Series in Physics. Princeton University Press, Princeton (1990)

    Book  MATH  Google Scholar 

  5. Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65(3), 851–1112 (1993)

    Article  Google Scholar 

  6. Deng, S., Li, X.: Generalized homoclinic solutions for the Swift–Hohenberg equation. J. Math. Anal. Appl. 390(1), 15–26 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gazzola, F.: Nonlinearity in oscillating bridges. Electron. J. Differ. Equ. 2013(211), 1–47 (2013)

  8. Gazzola, F., Karageorgis, P.: Refined blow-up results for nonlinear fourth order differential equations (preprint)

  9. Gazzola, F., Pavani, R.: Blow up oscillating solutions to some nonlinear fourth order differential equations. Nonlinear Anal. 74(17), 6696–6711 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gazzola, F., Pavani, R.: Blow-up oscillating solutions to some nonlinear fourth order differential equations describing oscillations of suspension bridges. In: Biondini, Frangopol (eds.) IABMAS12, 6th International Conference on Bridge Maintenance, Safety, Management, Resilience and Sustainability, Stresa 2012. Taylor & Francis Group, London, pp. 3089–3093 (2012)

  11. Gazzola, F., Pavani, R.: Wide oscillation finite time blow up for solutions to nonlinear fourth order differential equations. Arch. Ration. Mech. Anal. 207(2), 717–752 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Karageorgis, P., Stalker, J.: A lower bound for the amplitude of traveling waves of suspension bridges. Nonlinear Anal. 75(13), 5212–5214 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lazer, A.C., McKenna, P.J.: Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis. SIAM Rev. 32(4), 537–578 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lazer, A.C., McKenna, P.J.: On travelling waves in a suspension bridge model as the wave speed goes to zero. Nonlinear Anal. 74(12), 3998–4001 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. McKenna, P.J., Walter, W.: Nonlinear oscillations in a suspension bridge. Arch. Ration. Mech. Anal. 98(2), 167–177 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. McKenna, P.J., Walter, W.: Travelling waves in a suspension bridge. SIAM J. Appl. Math. 50(3), 703–715 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Peletier, L.A., Rottschäfer, V.: Pattern selection of solutions of the Swift-Hohenberg equation. Phys. D 194(1–2), 95–126 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Peletier, L.A., Troy, W.C.: Multibump periodic travelling waves in suspension bridges. Proc. R. Soc. Edinb. Sect. A 128(3), 631–659 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Peletier, L.A., Troy, W.C.: Pattern formation described by the Swift–Hohenberg equation. Sūrikaisekikenkyūsho Kōkyūroku 1178, 1–15 (2000) [Nonlinear diffusive systems—dynamics and asymptotic analysis (Japanese) (Kyoto, 2000)]

  20. Peletier, L.A., Troy, W.C.: Spatial patterns. Higher order models in physics and mechanics. Progress in Nonlinear Differential Equations and their Applications, vol. 45. Birkhäuser Boston Inc, Boston (2001)

  21. Radu, P., Toundykov, D., Trageser, J.: Finite time blow-up in nonlinear suspension bridge models. J. Differ. Equ. 257(11), 4030–4063 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Santra, S., Wei, J.: Homoclinic solutions for fourth order traveling wave equations. SIAM J. Math. Anal. 41(5), 2038–2056 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Smets, D., van den Berg, J.B.: Homoclinic solutions for Swift–Hohenberg and suspension bridge type equations. J. Differ. Equ. 184(1), 78–96 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Swift, J., Hohenberg, P.C.: Hydrodynamic fluctuations at the convective instability. Phys. Rev. A 15(1), 319–328 (1977)

    Article  Google Scholar 

  25. Tikhonov, A.N., Vasil’eva, A.B., Sveshnikov, A.G.: Differential equations. Springer Series in Soviet Mathematics. Springer, Berlin (1985) (Translated from the Russian by A. B. Sossinskij)

  26. van den Berg, G.J.B., Peletier, L.A., Troy, W.C.: Global branches of multi-bump periodic solutions of the Swift–Hohenberg equation. Arch. Ration. Mech. Anal. 158(2), 91–153 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanderley Ferreira Jr..

Additional information

Communicated by P. Rabinowitz.

V. Ferreira Jr. is supported by FAPESP #2012/23741-3 grant. E. Moreira dos Santos is partially supported by CNPq #309291/2012-7 grant and FAPESP #2014/03805-2 grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, V., Moreira dos Santos, E. On the finite space blow up of the solutions of the Swift–Hohenberg equation. Calc. Var. 54, 1161–1182 (2015). https://doi.org/10.1007/s00526-015-0821-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-015-0821-6

Mathematics Subject Classification

Navigation