Skip to main content
Log in

Ground states of self-gravitating elastic bodies

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

The existence of static, self-gravitating elastic bodies in the non-linear theory of elasticity is established. Equilibrium configurations of self-gravitating elastic bodies close to the reference configuration have been constructed in Beig and Schmidt (Proc R Soc Lond, 109–115, 2003) using the implicit function theorem. In contrast, the steady states considered in this article correspond to deformations of the relaxed state with no size restriction and are obtained as minimizers of the energy functional of the elastic body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersson, L., Beig, B., Schmidt, B.G.: Static self-gravitating elastic bodies in Einstein gravity. Commun. Pure Appl. Math. 61, 988–1023 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rat. Mech. Anal. 63, 337–403 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ball, J.M.: Global invertibility of Sobolev functions and the interpenetration of matter. Proc. R. Soc. Edinb. 88A, 315–328 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ball, J.M.: Some open problems in elasticity. In: Geometry. Mechanics, and Dynamics, pp. 3–59. Springer, New York (2002)

  5. Ball, J.M.: Progress and puzzles in nonlinear elasticity. In: Poly-, Quasi- and Rank-One Convexity in Applied Mechanics. CISM Internatonal Centre for Mechanical Sciences. Springer, Vienna (2010)

  6. Beig, R., Schmidt, B.G.: Static, self-gravitating elastic bodies. Proc. R. Soc. Lond. A 459, 109–115 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Binney, J., Tremaine, S.: Galactic Dynamics. Princeton University Press, Princeton (1987)

    MATH  Google Scholar 

  8. Calogero, S., Sánchez, O., Soler, J.: Asymptotic behavior and orbital stability of galactic dynamics in relativistic scalar gravity. Arch. Rat. Mech. Anal. 194, 743–773 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chamel, N., Haensel, P.: Physics of neutron star crusts. Living Rev. Rel 11 (2008). http://www.livingreviews.org/lrr-2008-10. Accessed on 20 July 2012

  10. Chandrasekhar, S.: An Introduction to the Study of Stellar Structure. Dover, New York (1958)

    MATH  Google Scholar 

  11. Ciarlet, P.G., Nec̆as, J.: Injectivity and self-contact in nonlinear elasticity. Arch. Rat. Mech. Anal. 97, 171–188 (1987)

  12. Ciarlet, P.G.: Mathematical Elasticity, vol. I. North-Holland, Amsterdam (1988)

    MATH  Google Scholar 

  13. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  14. Heinonen, J., Koskela, P.: Sobolev mappings with integrable dilatations. Arch. Rat. Mech. Anal. 125, 81–97 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Joseph, D.D., Lundgren, T.S.: Quasilinear Dirichlet problems driven by positive sources. Arch. Rat. Mech. Anal. 49, 241–269 (1973)

    MathSciNet  MATH  Google Scholar 

  16. Lemou, M., Mehats, F., Raphaël, P.: Orbital stability of spherical galactic models. Invent. Math. 187, 145–194 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lichtenstein, L.: Gleichgewichtsfiguren rotierender Flüssigkeiten. Springer, Berlin (1933)

    Book  MATH  Google Scholar 

  18. Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence (2001)

    Google Scholar 

  19. Lin, P.: Maximization of entropy for an elastic body free of surface traction. Arch. Rat. Mech. Anal. 112, 161–191 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lindblom, L.: On the symmetries of equilibrium stellar models. Phil. Trans. R. Soc. Lond. A 340, 353–364 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lions, P.L.: he concentration-compactness principle in the calculus of variations. The locally compact case. I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 109–145 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  22. Marcus, M., Mizel, V.J.: Transformations by functions in Sobolev spaces and lower semicontinuity for parametric variational problems. Bull. Am. Math. Soc. 79, 790–795 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ogden, R.W., Saccomandi, G., Sgura, I.: Fitting hyperelastic models to experimental data. Comput. Mech. 34, 484–502 (2004)

    Article  MATH  Google Scholar 

  24. Rein, G.: Reduction and a concentration-compactness principle for energy-Casimir functionals. SIAM J. Math. Anal. 33, 896–912 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rein, G.: Non linear stability of gaseous stars. Arch. Rat. Mech. Anal. 168, 115–130 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rein, G.: Collisionless kinetic equations from astrophysics-the Vlasov–Poisson system. Handbook of differential equations, evolutionary equations. In: Dafermos, C.M., Feireisl, E. (eds.) vol. 3. Elsevier (2007)

  27. Wolansky, G.: On non-linear stability of polytropic galaxies. Ann. Inst. Henri Poincaré 16, 15–48 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The first author would like to thank Jesús Montejo for many helpful discussions, as well as Robert Beig and Bernd Schmidt for their important comments on a previous version of the paper. The second author has been supported by the “Ministerio de Ciencia e Innovación” (MICINN) of Spain (Proj. MTM2009-10878) and “Junta de Andalucía” (Proj. FQM-116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Calogero.

Additional information

Communicated by J. Ball.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calogero, S., Leonori, T. Ground states of self-gravitating elastic bodies. Calc. Var. 54, 881–899 (2015). https://doi.org/10.1007/s00526-014-0809-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-014-0809-7

Mathematics Subject Classification

Navigation