Skip to main content
Log in

\(C^{2,\alpha }\) estimates for nonlinear elliptic equations in complex and almost complex geometry

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We describe how to use the perturbation theory of Caffarelli to prove Evans–Krylov type \(C^{2,\alpha }\) estimates for solutions of nonlinear elliptic equations in complex geometry, assuming a bound on the Laplacian of the solution. Our results can be used to replace the various Evans–Krylov type arguments in the complex geometry literature with a sharper and more unified approach. In addition, our methods extend to almost-complex manifolds, and we use this to obtain a new local estimate for an equation of Donaldson.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Błocki, Z.: Weak solutions to the complex Hessian equation. Ann. Inst. Fourier (Grenoble) 55(5), 1735–1756 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Buzano, E., Fino, A., Vezzoni, L.: The Calabi–Yau equation for \(T^2\)-bundles over \(T^2\): the non-Lagrangian case. Rend. Semin. Mat. Univ. Politec. Torino 69(3), 281–298 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Caffarelli, L.A.: Interior a priori estimates for solutions of fully nonlinear equations. Ann. Math. 130(1), 189–213 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Caffarelli, L.A., Cabré, X.: Fully Nonlinear Elliptic Equations. American Mathematical Society: Colloquium Publications, vol. 43. American Mathematical Society, Providence, RI (1995)

  5. Caffarelli, L.A., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second-order elliptic equations III: functions of the eigenvalues of the Hessian. Acta Math. 155(3–4), 261–301 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Caffarelli, L.A., Silvestre, L.: On the Evans–Krylov theorem. Proc. Am. Math. Soc. 138(1), 263–265 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Calabi, E.: Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens. Mich. Math. J. 5, 105–126 (1958)

    Article  MATH  Google Scholar 

  8. Cao, H.-D.: Deformation of Kähler metrics to Kähler–Einstein metrics on compact Kähler manifolds. Invent. Math. 81(2), 359–372 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chau, A.: Convergence of the Kähler–Ricci flow on noncompact Kähler manifolds. J. Differ. Geom. 66(2), 211–232 (2004)

    Article  MATH  Google Scholar 

  10. Chen, X.X.: On the lower bound of the Mabuchi energy and its application. Intern. Math. Res. Notices 12, 607–623 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, X.X.: A new parabolic flow in Kähler manifolds. Comm. Anal. Geom. 12(4), 837–852 (2004)

  12. Chen, X.X., Tian, G.: Geometry of Kähler metrics and foliations by holomorphic discs. Publ. Math. Inst. Hautes Études Sci. 107, 1–107 (2008)

    Article  MATH  Google Scholar 

  13. Cherrier, P.: Équations de Monge-Ampère sur les variétés hermitiennes compactes. Bull. Sci. Math. 111(4), 343–385 (1987)

    MathSciNet  MATH  Google Scholar 

  14. Chow, B., Lu, P., Ni, L.: Hamilton’s Ricci flow, Graduate Studies in Mathematics, 77. RI; Science Press, New York, American Mathematical Society, Providence (2006)

    Google Scholar 

  15. Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.) 27(1), 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Delanoë, P.: Sur l’analogue presque-complexe de l’équation de Calabi-Yau. Osaka J. Math. 33(4), 829–846 (1996)

    MathSciNet  MATH  Google Scholar 

  17. Dinew, S., Kołodziej, S.: A priori estimates for the complex Hessian equations. Anal. PDE 7(1), 227–244 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dinew, S., Kołodziej, S.: Liouville and Calabi-Yau type theorems for complex Hessian equations, preprint. arXiv:1203.3995

  19. Dinew, S., Zhang, X., Zhang, X.: The \(C^{2,\alpha }\) estimate of complex Monge–Ampère equation. Indiana Univ. Math. J. 60(5), 1713–1722 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Donaldson, S.K.: Moment maps and diffeomorphisms. Sir Michael Atiyah: a great mathematician of the twentieth century. Asian J. Math. 3(1), 1–15 (1999)

    Article  MathSciNet  Google Scholar 

  21. Donaldson, S.K.: Two-forms on four-manifolds and elliptic equations. In: Inspired by Chern, S.S., World Scientific (2006)

  22. Evans, L.C.: Classical solutions of fully nonlinear, convex, second order elliptic equations. Comm. Pure Appl. Math. 25, 333–363 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fang, H., Lai, M., Ma, X.-N.: On a class of fully nonlinear flows in Kähler geometry. J. Reine Angew. Math. 653, 189–220 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Fino, A., Li, Y., Salamon, S., Vezzoni, L.: The Calabi–Yau equation on 4-manifolds over 2-tori. Trans. Am. Math. Soc. 365(3), 1551–1575 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fu, J., Wang, Z., Wu, D.: Form-type Calabi–Yau equations. Math. Res. Lett. 17(5), 887–903 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fu, J., Wang, Z., Wu, D.: Form-type Calabi–Yau equations on Kähler manifolds of nonnegative orthogonal bisectional curvature, preprint. arXiv:1010.2022

  27. Fu, J., Yau, S.-T.: The theory of superstring with flux on non-Kähler manifolds and the complex Monge–Ampère equation. J. Differ. Geom. 78(3), 369–428 (2008)

    Article  MATH  Google Scholar 

  28. Gauduchon, P.: La \(1\)-forme de torsion d’une variété hermitienne compacte. Math. Ann. 267, 495–518 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gill, M.: Convergence of the parabolic complex Monge–Ampère equation on compact Hermitian manifolds. Comm. Anal. Geom. 19(2), 277–303 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Guan, B., Li, Q.: Complex Monge–Ampère equations and totally real submanifolds. Adv. Math. 225(3), 1185–1223 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Guan, B., Sun, W.: On a class of fully nonlinear elliptic equations on Hermitian manifolds. Calc. Var. Partial Differ. Equ. (to appear). arXiv:1301.5863

  32. Harvey, F.R., Lawson, H.B.: Dirichlet duality and the nonlinear Dirichlet problem on Riemannian manifolds. J. Differ. Geom. 88(3), 395–482 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Harvey, F.R., Lawson, H.B.: Potential theory on almost complex manifolds, preprint. arXiv:1107.2584

  34. Hou, Z.: Complex Hessian equation on Kähler manifold. Int. Math. Res. Not. IMRN 2009(16), 3098–3111 (2009)

    MATH  Google Scholar 

  35. Hou, Z., Ma, X.-N., Wu, D.: A second order estimate for complex Hessian equations on a compact Kähler manifold. Math. Res. Lett. 17(3), 547–561 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Jbilou, A.: Complex Hessian equations on some compact Kähler manifolds, Int. J. Math. Math. Sci. Art. ID 350183, p. 48 (2012)

  37. Kokarev, V.N.: Mixed volume forms and a complex equation of Monge–Ampère type on Kähler manifolds of positive curvature. Izv. Math. 74(3), 501–514 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Krylov, N.V.: Boundedly nonhomogeneous elliptic and parabolic equations, Izvestia Akad. Nauk. SSSR 46 (1982), 487–523; English translation in. Math. USSR Izv. 20(3), 459–492 (1983)

  39. Li, S.-Y.: On the Dirichlet problems for symmetric function equations of the eigenvalues of the complex Hessian. Asian J. Math. 8(1), 87–106 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  40. Li, Y.: A priori estimates for Donaldson’s equation over compact Hermitian manifolds. Calc. Var. Partial Differ. Equ. 50(3–4), 867–882 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Li, J., Yau, S.-T.: The existence of supersymmetric string theory with torsion. J. Differ. Geom. 70(1), 143–181 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. Li, T.-J., Zhang, W.: Comparing tamed and compatible symplectic cones and cohomological properties of almost complex manifolds. Comm. Anal. Geom. 17(4), 651–683 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Li, T.-J., Zhang, W.: Almost Kähler forms on rational 4-manifolds, preprint. arXiv:1210.2377

  44. Lu, H.C.: Viscosity solutions to complex Hessian equations. J. Funct. Anal. 264(6), 1355–1379 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Nguyen, N.C.: Hölder continuous solutions to complex Hessian equations. Potential Anal. 41(3), 887–902 (2014)

  46. Phong, D.H., Sesum, N., Sturm, J.: Multiplier ideal sheaves and the Kähler–Ricci flow. Comm. Anal. Geom. 15(3), 613–632 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. Pliś, S.: The Monge–Ampère equation on almost complex manifolds. Math. Z. 276(3–4), 969–983 (2014)

    MathSciNet  MATH  Google Scholar 

  48. Popovici, D.: Aeppli cohomology classes associated with Gauduchon metrics on compact complex manifolds, preprint. arXiv:1310.3685

  49. Savin, O.: Small perturbation solutions for elliptic equations. Comm. Partial Differ. Equ. 32(4–6), 557–578 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  50. Siu, Y.-T.: Lectures on Hermitian–Einstein Metrics for Stable Bundles and Kähler–Einstein metrics, DMV Seminar, 8. Birkhäuser, Basel (1987)

    Book  MATH  Google Scholar 

  51. Song, J., Weinkove, B.: On the convergence and singularities of the J-flow with applications to the Mabuchi energy. Comm. Pure Appl. Math. 61(2), 210–229 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  52. Spruck, J.: Geometric aspects of the theory of fully nonlinear elliptic equations, in Global theory of minimal surfaces, vol. 2, pp. 283–309. Am. Math. Soc., Providence, RI (2005)

  53. Sun, W.: On a class of fully nonlinear elliptic equations on closed Hermitian manifolds, preprint. arXiv:1310.0362

  54. Taubes, C.H.: Tamed to compatible: symplectic forms via moduli space integration. J. Symp. Geom. 9(2), 161–250 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  55. Tosatti, V., Weinkove, B.: Estimates for the complex Monge–Ampère equation on Hermitian and balanced manifolds. Asian J. Math. 14(1), 19–40 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  56. Tosatti, V., Weinkove, B.: The complex Monge–Ampère equation on compact Hermitian manifolds. J. Am. Math. Soc. 23(4), 1187–1195 (2010)

    Article  MATH  Google Scholar 

  57. Tosatti, V., Weinkove, B.: The Calabi–Yau equation, symplectic forms and almost complex structures. In: Geometry and Analysis, Advanced Lectures in Mathematics, vol. 17, no. 1, pp. 475–493. International Press, Somerville, MA (2011)

  58. Tosatti, V., Weinkove, B.: The Calabi–Yau equation on the Kodaira–Thurston manifold. J. Inst. Math. Jussieu 10(2), 437–447 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  59. Tosatti, V., Weinkove, B.: On the evolution of a Hermitian metric by its Chern–Ricci form. J. Differ. Geom. (to appear). arXiv:1201.0312

  60. Tosatti, V., Weinkove, B.: The Monge–Ampère equation for \((n-1)\)-plurisubharmonic functions on a compact Kähler manifold, preprint. arXiv:1305.7511

  61. Tosatti, V., Weinkove, B.: Hermitian metrics, \((n-1, n-1)\) forms and Monge–Ampère equations, preprint. arXiv:1310.6326

  62. Tosatti, V., Weinkove, B., Yau, S.-T.: Taming symplectic forms and the Calabi–Yau equation. Proc. Lond. Math. Soc. 97(2), 401–424 (2008)

  63. Trudinger, N.S.: Fully nonlinear, uniformly elliptic equations under natural structure conditions. Trans. Am. Math. Soc. 278(2), 751–769 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  64. Wang, X.-J.: A class of fully nonlinear elliptic equations and related functionals. Indiana Univ. Math. J. 43(1), 25–54 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  65. Wang, Y.: On the \(C^{2,\alpha }\)-regularity of the complex Monge–Ampère equation. Math. Res. Lett. 19(4), 939–946 (2012)

    MathSciNet  Google Scholar 

  66. Wang, Y.: Small perturbation solutions for parabolic equations. Indiana Univ. Math. J. 62(2), 671–697 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  67. Wehrheim, K.: Uhlenbeck compactness. European Mathematical Society (EMS), Zürich, EMS Series of Lectures in Mathematics (2004)

  68. Weinkove, B.: Convergence of the J-flow on Kähler surfaces. Comm. Anal. Geom. 12(4), 949–965 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  69. Weinkove, B.: On the J-flow in higher dimensions and the lower boundedness of the Mabuchi energy. J. Differ. Geom. 73(2), 351–358 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  70. Weinkove, B.: The Calabi–Yau equation on almost-Kähler four-manifolds. J. Differ. Geom. 76(2), 317–349 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  71. Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation I. Comm. Pure Appl. Math. 31(3), 339–411 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Weinkove.

Additional information

Communicated by O. Savin.

Research supported in part by NSF grants DMS-1236969, DMS-1308988 and DMS-1332196. The first named-author is supported in part by a Sloan Research Fellowship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tosatti, V., Wang, Y., Weinkove, B. et al. \(C^{2,\alpha }\) estimates for nonlinear elliptic equations in complex and almost complex geometry. Calc. Var. 54, 431–453 (2015). https://doi.org/10.1007/s00526-014-0791-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-014-0791-0

Mathematics Subject Classification

Navigation