Skip to main content
Log in

SCCRNet: a framework for source camera identification on digital images

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Identifying the source of digital images is a critical task in digital image forensics. A novel architecture is proposed using a combination of Convolutional layers and residual blocks to distinguish source cameras. The network architecture comprises convolutional layers, residual blocks, batch normalization layers, a fully connected layer and a softmax layer. Architecture aids in learning and extracting the features for identifying the model and sensor level patterns for source camera identification. Multiple patches are taken from each image to increase the sample space size. The experiments on the MICHE-I dataset show an accuracy of 99.47% for model level source camera identification and 96.03% for sensor level identification. Thus, the proposed method is more accurate than the state-of-the-art methods on the MICHE-1 dataset. The proposed architecture yields comparable results on Dresden and VISION datasets also. Moreover, a technique is also proposed to identify the images of unknown camera models by setting a threshold value for the output prediction score.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Lyu S (2006) Digital image forensics: there is more to a picture than meets the eye

  2. San CK, Lam EY, Wong KK (2006) Source camera identification using footprints from lens aberration. In: SPIE, 6069:60690 . https://doi.org/10.1117/12.649775

  3. Çeliktutan O, Sankur B, Avcibas I (2008) Blind identification of source cell-phone model. IEEE Trans Inf For Secur 3(3):553–566. https://doi.org/10.1109/TIFS.2008.926993

    Article  Google Scholar 

  4. Korus P (2017) Digital image integrity-a survey of protection and verification techniques. Digital Signal Process 71:1–26. https://doi.org/10.1016/j.dsp.2017.08.009

    Article  MathSciNet  Google Scholar 

  5. Bernacki J (2020) A survey on digital camera identification methods. For Sci Int Digit Investig 34:300983. https://doi.org/10.1016/j.fsidi.2020.300983

    Article  Google Scholar 

  6. Huang Y, Zhang J, Huang H (2015) Camera model identification with unknown models. IEEE Trans Inf For Secur 10(12):2692–2704. https://doi.org/10.1109/TIFS.2015.2474836

    Article  Google Scholar 

  7. Tomioka Y, Ito Y, Kitazawa H (2013) Robust digital camera identification based on pairwise magnitude relations of clustered sensor pattern noise. IEEE Trans Inf For Secur 8(12):1986–1995. https://doi.org/10.1109/TIFS.2013.2284761

    Article  Google Scholar 

  8. Zheng Y, Cao Y, Chang C (2020) A puf-based data-device hash for tampered image detection and source camera identification. IEEE Trans Inf For Secur 15:620–634. https://doi.org/10.1109/TIFS.2019.2926777

    Article  Google Scholar 

  9. Huang Y, Cao L, Zhang J, Pan L, Liu Y (2018) Exploring feature coupling and model coupling for image source identification. IEEE Trans Inf For Secur 13(12):3108–3121. https://doi.org/10.1109/TIFS.2018.2838079

    Article  Google Scholar 

  10. Dirik AE, Sencar HT, Memon N (2008) Digital single lens reflex camera identification from traces of sensor dust. IEEE Trans Inf For Secur 3(3):539–552. https://doi.org/10.1109/TIFS.2008.926987

    Article  Google Scholar 

  11. Chennamma H, Rangarajan L (2010) Source camera identification based on sensor readout noise. Int J Digit Crime For 2(3):28–42. https://doi.org/10.4018/jdcf.2010070103

    Article  Google Scholar 

  12. Lukas J, Fridrich J, Goljan M (2006) Digital camera identification from sensor pattern noise. IEEE Trans Inf For Secur 1(2):205–214. https://doi.org/10.1109/TIFS.2006.873602

    Article  Google Scholar 

  13. Li C-T, Li Y (2011) Color-decoupled photo response non-uniformity for digital image forensics. IEEE Trans Circuits Syst Video Technol 22(2):260–271. https://doi.org/10.1109/TCSVT.2011.2160750

    Article  Google Scholar 

  14. Chen M, Fridrich J, Goljan M, Lukás J (2008) Determining image origin and integrity using sensor noise. IEEE Trans Inf For Secur 3(1):74–90. https://doi.org/10.1109/TIFS.2007.916285

    Article  Google Scholar 

  15. Li C-T (2010) Source camera identification using enhanced sensor pattern noise. IEEE Trans Inf For Secur 5(2):280–287. https://doi.org/10.1109/TIFS.2010.2046268

    Article  Google Scholar 

  16. Wu G, Kang X, Liu KR (2012) A context adaptive predictor of sensor pattern noise for camera source identification. In: 2012 19th IEEE International conference on image processing, 237–240 . https://doi.org/10.1109/ICIP.2012.6466839. IEEE

  17. Al-Ani M, Khelifi F (2017) On the spn estimation in image forensics: a systematic empirical evaluation. IEEE Trans Inf For Secur 12(5):1067–1081. https://doi.org/10.1109/TIFS.2016.2640938

    Article  Google Scholar 

  18. Zandi N, Razzazi F (2020) Source camera identification using wlbp descriptor. In: 2020 International conference on machine vision and image processing (MVIP), 1–6 . https://doi.org/10.1109/MVIP49855.2020.9187484. IEEE

  19. Jiang X, Wei S, Liu T, Zhao R, Zhao Y, Huang H (2021) Blind image clustering for camera source identification via row-sparsity optimization. IEEE Trans Multimedia 23:2602–2613. https://doi.org/10.1109/TMM.2020.3013449

    Article  Google Scholar 

  20. Huang N, He J, Zhu N, Xuan X, Liu G, Chang C (2018) Identification of the source camera of images based on convolutional neural network. Digit Investig 26:72–80. https://doi.org/10.1016/j.diin.2018.08.001

    Article  Google Scholar 

  21. Gloe T, Böhme R (2010) The dresden image database for benchmarking digital image forensics. J Digit For Pract 3(2–4):150–159. https://doi.org/10.1145/1774088.1774427

    Article  Google Scholar 

  22. Wang B, Yin J, Tan S, Li Y, Li M (2018) Source camera model identification based on convolutional neural networks with local binary patterns coding. Signal Process Image Commun 68:162–168. https://doi.org/10.1016/j.image.2018.08.001

    Article  Google Scholar 

  23. Yang P, Ni R, Zhao Y, Zhao W (2019) Source camera identification based on content-adaptive fusion residual networks. Pattern Recogn Lett 119:195–204. https://doi.org/10.1016/j.patrec.2017.10.016

    Article  Google Scholar 

  24. Baroffio L, Bondi L, Bestagini P, Tubaro S (2016) Camera identification with deep convolutional networks. arXiv preprint arXiv:1603.01068

  25. Tuama A, Comby F, Chaumont M (2016) Camera model identification with the use of deep convolutional neural networks. In: IEEE International workshop on information forensics and security (WIFS), 1–6. https://doi.org/10.1109/WIFS.2016.7823908

  26. Freire-Obregón D, Narducci F, Barra S, Castrillón-Santana M (2019) Deep learning for source camera identification on mobile devices. Pattern Recogn Lett 126:86–91. https://doi.org/10.1016/j.patrec.2018.01.005

    Article  Google Scholar 

  27. Zhang G, Wang B, Wei F, Shi K, Wang Y, Sui X, Zhu M (2021) Source camera identification for re-compressed images: a model perspective based on tri-transfer learning. Comput Secur 100:102076. https://doi.org/10.1016/j.cose.2020.102076

    Article  Google Scholar 

  28. Liu Y, Zou Z, Yang Y, Law N-FB, Bharath AA (2021) Efficient source camera identification with diversity-enhanced patch selection and deep residual prediction. Sensors 21(14):4701. https://doi.org/10.3390/s21144701

    Article  Google Scholar 

  29. Khan S, Bianchi T (2021) Fast image clustering based on compressed camera fingerprints. Signal Process Image Commun 91:116070. https://doi.org/10.1016/j.image.2020.116070

    Article  Google Scholar 

  30. Mandelli S, Cozzolino D, Bestagini P, Verdoliva L, Tubaro S (2020) Cnn-based fast source device identification. IEEE Signal Process Lett 27:1285–1289. https://doi.org/10.1109/LSP.2020.3008855

    Article  Google Scholar 

  31. Fanfani M, Piva A, Colombo C (2022) Prnu registration under scale and rotation transform based on convolutional neural networks. Pattern Recogn 124:108413. https://doi.org/10.1016/j.patcog.2021.108413

    Article  Google Scholar 

  32. Bondi L, Baroffio L, Güera D, Bestagini P, Delp EJ, Tubaro S (2016) First steps toward camera model identification with convolutional neural networks. IEEE Signal Process Lett 24(3):259–263. https://doi.org/10.1109/LSP.2016.2641006

    Article  Google Scholar 

  33. Bennabhaktula GS, Alegre E, Karastoyanova D, Azzopardi G (2022) Camera model identification based on forensic traces extracted from homogeneous patches. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2022.117769

    Article  Google Scholar 

  34. Kang C, Kang S (2020) Camera model identification using a deep network and a reduced edge dataset. Neural Comput Appl 32(17):13139–13146

    Article  Google Scholar 

  35. Rafi AM, Tonmoy TI, Kamal U, Wu Q, Hasan M (2021) Remnet: remnant convolutional neural network for camera model identification. Neural Comput Appl 33(8):3655–3670

    Article  Google Scholar 

  36. Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pp 448–456

  37. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 770–778 . https://doi.org/10.1109/CVPR.2016.90

  38. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT press, Cambridge

    Google Scholar 

  39. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 .https://doi.org/10.48550/arXiv.1409.1556

  40. Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In: ICML

  41. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems. pp 1097–1105

  42. De Marsico M, Nappi M, Riccio D, Wechsler H (2015) Mobile iris challenge evaluation (miche)-i, biometric iris dataset and protocols. Pattern Recogn Lett 57:17–23. https://doi.org/10.1016/j.patrec.2015.02.009

    Article  Google Scholar 

  43. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 4700–4708 https://doi.org/10.1109/CVPR.2017.243

  44. Shullani D, Fontani M, Iuliani M, Shaya OA (2017) Vision: a video and image dataset for source identification. EURASIP J Inf Secur 1:1–16. https://doi.org/10.1186/s13635-017-0067-2

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Centre for Engineering Research and Development (CERD) Fellowship, Kerala, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Sychandran.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sychandran, C.S., Shreelekshmi, R. SCCRNet: a framework for source camera identification on digital images. Neural Comput & Applic 36, 1167–1179 (2024). https://doi.org/10.1007/s00521-023-09088-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-023-09088-6

Keywords

Navigation