Skip to main content
Log in

Predictive model for shear strength estimation in reinforced concrete beams with recycled aggregates using Gaussian process regression

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In order to attain sustainable development, recycled concrete aggregates (RCAs) are increasingly utilized in civil engineering projects. Therefore, it is vital to study the performance of structural elements made with RCA. Shear strength is one of the main aspects in examining the structural performance of concrete beams. Shear strength is usually obtained using code calculation methods, and its exact value is obtained by experimental studies. The development of intelligent systems has provided the conditions for faster and easier calculation of this parameter. Shear strength prediction of recycled concrete beams has rarely been investigated. Therefore, in this research, the shear strength of these beams has been investigated and predicted. To achieve this goal, several methods including linear regression, regression tree, ensemble bagged trees, ensemble boosted trees, and Gaussian process regression were employed. The database used in this paper was included of 128 sets of data obtained from experimental studies. Parameters used as model inputs included percentage of recycled aggregates used in beam construction (RCA), compressive strength of concrete (\(f_{c}^{{\prime}}\)), longitudinal reinforcement ratio (\({\uprho }_{l}\)), transvers reinforcement ratio (\({\uprho }_{t}\)), yield strength of longitudinal reinforcement (\(f_{dy}\)), yield strength of transvers reinforcement (\(f_{ty}\)), width of beam (b), effective depth of beam (d), length-to–effective-depth ratio (L/d), shear span-to-effective depth ratio (a/d), and shear strength of beam (\(v_{U}\)) was output of model. Comparison of the results of the aforementioned models showed that the Gaussian process regression model had a better performance in predicting the output parameter, with a coefficient of R2, 0.91, and also had the lowest error, which indicates better performance of this proposed model, in comparison with other models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Ababneh A, Alhassana M, Abu-Haifaa M (2020) Predicting the contribution of recycled aggregate concrete to the shear capacity of beams without transverse reinforcement using artificial neural networks. Case Stud Constr Mater 13:e00414

    Google Scholar 

  2. Bairagi NK, Vidyadhara HS, Ravande K (1990) Mix design procedure for recycled aggregate concrete. Constr Build Mater 4(4):188–193

    Google Scholar 

  3. Wagih AM, El-Karmoty HZ, Ebid M, Okba SH (2013) Recycled construction and demolition concrete waste as aggregate for structural concrete. HBRC J 9(3):193–200

    Google Scholar 

  4. Kabir S, Al-Shayeb A, Khan IM (2016) Recycled construction debris as concrete aggregate for sustainable construction materials. Procedia Eng 145:1518–1525

    Google Scholar 

  5. Shahidan S, Azmi MAM, Kupusamy K, Zuki SSM, Ali N (2017) Utilizing construction and demolition (C&D) waste as recycled aggregates (RA) in concrete. Procedia Eng 174:1028–1035

    Google Scholar 

  6. Silva RV, de Brito J, Dhir RK (2018) Fresh-state performance of recycled aggregate concrete: a review. Constr Build Mater 178:19–31

    Google Scholar 

  7. Martínez-Lage I, Vázquez-Burgo P, Velay-Lizancos M (2020) Sustainability evaluation of concretes with mixed recycled aggregate based on holistic approach: technical. Econ Environ Anal Waste Manag 104:9–19

    Google Scholar 

  8. Visintin P, Xie T, Bennett B (2020) A large-scale life-cycle assessment of recycled aggregate concrete: the influence of functional unit, emissions allocation and carbon dioxide uptake. J Clean Prod 248:119243

    Google Scholar 

  9. Hatungimana D, Yazıcı Ş, Mardani-Aghabaglou A (2020) Effect of recycled concrete aggregate quality on properties of concrete. J Green Build 15:57–69

    Google Scholar 

  10. Abdelfatah A, Tabsh S, Yehia S (2011) Utilization of Recycled Coarse Aggregate in Concrete Mixes. J Civ Eng Archit 5:562–566

    Google Scholar 

  11. Medina C, Zhu W, Howind T, Sánchez de Rojas M, Frías M (2014) Influence of mixed recycled aggregate on the physical—mechanical properties of recycled concrete. J Clean Prod 68:216–225

    Google Scholar 

  12. Yehia S, Helal K, Abu-Sharhk A, Zaher A, Istaytehl H (2015) Strength and durability evaluation of recycled aggregate concrete. Int J Concr Struct Mater 9:219–239

    Google Scholar 

  13. Yehia S, Farrag S, Abu-Sharhk A, Zaher A, Istaytehl H, Helal K (2015) Concrete with recycled aggregate: evaluation of mechanical properties. GSTF J Eng Technol (JET) 3:37–44

    Google Scholar 

  14. Tayeh BA, Al Saffar DM, Alyousef R (2020) The utilization of recycled aggregate in high performance concrete: a review. J Mater Res Technol 9:8469–8481

    Google Scholar 

  15. Cantero B, Bravo M, de Brito J, Sáez del Bosque IF, Medina C (2020) Mechanical Behavior of Structural Concrete with Ground Recycled Concrete Cement and Mixed Recycled Aggregate. J Clean Prod 275:122913

    Google Scholar 

  16. Yehia S, Abdelfatah A, Mansour D (2020) Effect of aggregate type and specimen configuration on concrete compressive strength. Crystals 10:625

    Google Scholar 

  17. Arezoumandi M, Drury J, Volz JS, Khayat KH (2015) Effect of recycled concrete aggregate replacement level on shear strength of reinforced concrete beams. ACI Mater J 112:559

    Google Scholar 

  18. Arezoumandi M, Smith A, Volz JS, Khayat KH (2015) An experimental study on flexural strength of reinforced concrete beams with 100% recycled concrete aggregate. Eng Struct 88:154–162

    Google Scholar 

  19. Rahal KN, Al-Khaleefi A-L (2015) Shear-friction behavior of recycled and natural aggregate concrete—an experimental investigation. ACI Struct J 112:725–734

    Google Scholar 

  20. González-Fonteboa B, Martinez-Abella F (2007) Shear strength of recycled concrete beams. Constr Build Mater 21:887–893

    Google Scholar 

  21. González-Fonteboa B, Martinez-Abella F, Martínez-Lage I, Eiras-López J (2009) Structural shear behavior of recycled concrete with silica fume. Constr Build Mater 23:3406–3410

    Google Scholar 

  22. Choi H, Yi C, Cho H, Kang K (2010) Experimental study on the shear strength of recycled aggregate concrete beams. Mag Concr Res 62:103–114

    Google Scholar 

  23. Fathifazl G, Razaqpur AG, Isgor BO, Abbas A, Fournier B, Foo S (2009) Flexural performance of steel-reinforced recycled concrete beams. ACI Struct J 106:858–867

    Google Scholar 

  24. Wang Y, Zhang H, Geng Y, Wang Q, Zhang S (2019) Prediction of the elastic modulus and the splitting tensile strength of concrete incorporating both fine and coarse recycled aggregate. Constr Build Mater 215:332–346

    Google Scholar 

  25. Deng F, He Y, Zhou S, Yu Y, Cheng H, Wu X (2018) Compressive strength prediction of recycled concrete based on deep learning. Constr Build Mater 175:562–569

    Google Scholar 

  26. Hammoudi A, Moussaceb K, Belebchouche C, Dahmoune F (2019) Comparison of artificial neural network (ANN) and response surface methodology (RSM) prediction in compressive strength of recycled concrete aggregates. Constr Build Mater 209:425–436

    Google Scholar 

  27. González-Taboada I, González-Fonteboa B, Martínez-Abella F, Luis Pérez-Ordóñez J (2016) Prediction of the mechanical properties of structural recycled concrete using multivariable regression and genetic programming. Constr Build Mater 106:480–499

    Google Scholar 

  28. Duan ZH, Kou SC, Poon CS (2013) Prediction of compressive strength of recycled aggregate concrete using artificial neural networks. Constr Build Mater 40:1200–1206

    Google Scholar 

  29. Naderpour H, Rafiean AH, Fakharian P (2018) Compressive strength prediction of environmentally friendly concrete using artificial neural networks. J Build Eng 16:213–219

    Google Scholar 

  30. Han T, Siddique A, Khayat K, Huang J, Kumar A (2020) An ensemble machine learning approach for prediction and optimization of modulus of elasticity of recycled aggregate concrete. Constr Build Mater 244:118271

    Google Scholar 

  31. Revilla-Cuesta V, Ortega-López V, Skaf M, Manuel Manso J (2020) Effect of fine recycled concrete aggregate on the mechanical behavior of self-compacting concrete. Constr Build Mater 263:120671

    Google Scholar 

  32. Ajdukiewicz AB, Kliszczewicz AT (2007) Comparative tests of beams and columns made of recycled aggregate concrete and natural aggregate concrete. J Adv Concr Technol 5(2):259–273

    Google Scholar 

  33. Yang S (2016) Effect of different types of recycled concrete aggregates on equivalent concrete strength and drying shrinkage properties. Appl Sci 8:2190

    Google Scholar 

  34. Choi HB, Yi C, Cho HH, Kang KI (2010) Experimental study on the shear strength of recycled aggregate concrete beams. Mag Concr Res 62(2):103–114

    Google Scholar 

  35. Wardeh G, Ghorbel E (2019) Shear strength of reinforced concrete beams with recycled aggregates. Adv Struct Eng 22(8):1938–1951

    Google Scholar 

  36. Aly SA, Ibrahim MA, Khttab MM (2015) Shear behavior of reinforced concrete beams casted with recycled coarse aggregate. Eur J Adv Eng Technol 2(9):59–71

    Google Scholar 

  37. Maruyama I, Sogo M, Sogabe T, Sato R, Kawai K (2004) Flexural properties of reinforced recycled concrete beams. In: International RILEM conference on the use of recycled materials in buildings and structures, vol 315

  38. Li C, Liang N, Zhao M, Yao K, Li J, Li X (2020) Shear performance of reinforced concrete beams affected by satisfactory composite-recycled aggregates. Materials 13(7):1711

    Google Scholar 

  39. Asteris PG, Nozhati S, Nikoo M, Cavaleri L, Nikoo M (2018) Krill herd algorithm-based neural network in structural seismic reliability evaluation. Mech Adv Mater Struct 26:1–8

    Google Scholar 

  40. Naghipour M, Niak KM, Shariati M, Toghroli A (2020) Effect of progressive shear punch of a foundation on a reinforced concrete building behavior. Steel Compos Struct 35:279–294

    Google Scholar 

  41. Bunawan AR, Momeni E, Armaghani DJ, Rashid ASA (2018) Experimental and intelligent techniques to estimate bearing capacity of cohesive soft soils reinforced with soil-cement columns. Measurement 124:529–538

    Google Scholar 

  42. Armaghani D, Momeni E, Abad S (2015) Feasibility of ANFIS model for prediction of ground vibrations resulting from quarry blasting. Environ Earth Sci 74:2845–2860

    Google Scholar 

  43. Zhou J, Li X, Mitri HS (2015) Comparative performance of six supervised learning methods for the development of models of hard rock pillar stability prediction. Nat Hazards 79:291–316

    Google Scholar 

  44. Zhou J, Li E, Yang S, Wang M, Shi X, Yao S, Mitri HS (2019) Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories. Saf Sci 118:505–518

    Google Scholar 

  45. Zhou J, Shi X, Li X (2016) Utilizing gradient boosted machine for the prediction of damage to residential structures owing to blasting vibrations of open pit mining. J Vib Control 22:3986–3997

    Google Scholar 

  46. Asteris PG, Apostolopoulou M, Skentou AD, Moropoulou A (2019) Application of artificial neural networks for the prediction of the compressive strength of cement-based mortars. Comput Concr 24:329–345

    Google Scholar 

  47. Ghanizadeh AR, Abbaslou H, Amlashi AT, Alidoust P (2019) Modeling of bentonite/sepiolite plastic concrete compressive strength using artificial neural network and support vector machine. Front Struct Civ Eng 13:215–239

    Google Scholar 

  48. Reddy TCS (2018) Predicting the strength properties of slurry infiltrated fibrous concrete using artificial neural network. Front Struct Civ Eng 12:490–503

    Google Scholar 

  49. Chen R, Zhang P, Wu H, Wang Z, Zhong Z (2019) Prediction of shield tunneling-induced ground settlement using machine learning techniques. Front Struct Civ Eng 13:1363–1378

    Google Scholar 

  50. Singh T, Pal M, Arora VK (2019) Modeling oblique load carrying capacity of batter pile groups using neural network, random forest regression and M5 model tree. Front Struct Civ Eng 13:674–685

    Google Scholar 

  51. Ismail A (2018) ANN-based empirical modelling of pile behavior under static compressive loading. Front Struct Civ Eng 12:594–608

    Google Scholar 

  52. Asteris PG, Armaghani DJ, Hatzigeorgiou GD, Karayannis CG, Pilakoutas K (2019) Predicting the shear strength of reinforced concrete beams using Artificial Neural Networks. Comput Concr 24:469–488

    Google Scholar 

  53. Momeni E, Poormoosavian M, Mahdiyar A, Fakher A (2018) Evaluating random set technique for reliability analysis of deep urban excavation using Monte Carlo simulation. Comput Geotech 100:203–215

    Google Scholar 

  54. Liu K, Zou C, Zhang X, Yan J (2021) Innovative prediction models for the frost durability of recycled aggregate concrete using soft computing methods. J Build Eng 34:101822

    Google Scholar 

  55. Corrado N, Durrande N, Gherlone M, Hensman J, Mattone M, Surace C (2018) Single and multiple crack localization in beam-like structures using a Gaussian process regression approach. J Vib Control 24(18):4160–4175

    MathSciNet  Google Scholar 

  56. Buller AH, Memon BA, Buller AS, Sodhar IN (2021) Modeling fire effect of reinforced recycled aggregate concrete beams by regression analysis. Int J Emerging Technol 12(1):97–102

    Google Scholar 

  57. Buller AH (2019) “Effect Of Fire On Strength Of Reinforced Concrete Beams Made With Recycled Coarse Aggregates,” PhD Thesis, Department of Civil Engineering. Quaid-e-Awam University of Engineering Science and Technology, Nawabshah, Sindh, Pakistan, 2019.

  58. Mohammed HRM, Ismail S (2022) Proposition of new computer artificial intelligence models for shear strength prediction of reinforced concrete beams. Eng Comput 38(4):3739–3757

    Google Scholar 

  59. Barkhordari MS, Feng DC, Tehranizadeh M (2022) Efficiency of hybrid algorithms for estimating the shear strength of deep reinforced concrete beams. Period Polytechn Civil Eng 66(2):398–410

    Google Scholar 

  60. Zsutty TC (1968) Beam shear strength prediction by analysis of existing data. ACI Struct J 65:943–951

    Google Scholar 

  61. Zsutty TC (1971) Shear strength prediction for separate categories of simple beam tests. ACI Struct J 68:138–143

    Google Scholar 

  62. Gastebled OJ, May LM (2001) Mechanics model applied to shear failure of reinforced concrete beams without stirrups. ACI Struct J 98(2):184–190

    Google Scholar 

  63. Niwa J, Yamada K, Yokozawa K, Okamura H (1986) Revaluation of the equation for shear strength of reinforced concrete beams without web reinforcement. Doboku Gakkai Ronbunshu 1986:167–176

    Google Scholar 

  64. Xu S, Zhang X, Reinhardt HW (2012) Shear capacity prediction of reinforced concrete beams without stirrups using fracture mechanics approach. ACI Struct J 109(5):705–714

    Google Scholar 

  65. Bazˇant ZP, Kim J-K (1984) Size effect in shear failure of longitudinally reinforced beams. J Am Concr Inst 81:456–468

    Google Scholar 

  66. Bazˇant ZP, Sun H-H (1987) Size effect in diagonal shear failure: influence of aggregate size and stirrups. ACI Mater J 84:259–272

    Google Scholar 

  67. Bažant ZP, Yu Q (2005) Designing against size effect on shear strength of reinforced concrete beams without stirrups: II. Verification and calibration. J Struct Eng 131:1886–1897

    Google Scholar 

  68. NF EN 1992-1-1 (2006) Eurocode 2: design of concrete structures

  69. ACI 318-99 (2014) Building code requirements for structural concrete

  70. JSCE (2007) Standard Specifications for concrete structures, Tokyo

  71. Knaack AM, Kurama YC, ASCE M (2015) Behavior of reinforced concrete beams with recycled concrete coarse aggregates. J Struct Eng 141(3):B4014009

    Google Scholar 

  72. Al Mahmoud ZF, Boissiere R, Mercier C, Khelil A (2020) Shear behavior of reinforced concrete beams made from recycled coarse and fine aggregates. Structures 25:660–669

    Google Scholar 

  73. Momeni E, Dowlatshahi MB, Omidinasab F, Maizir H, Jahed Armaghani D (2020) Gaussian process regression technique to estimate the pile bearing capacity. Arab J Sci Eng 45:8255–8267

    Google Scholar 

  74. Williams CKI, Rasmussen CE (2006) Gaussian processes for machine learning. MIT Press, Cambridge

    MATH  Google Scholar 

  75. Kang F, Han S, Salgado R, Li J (2015) System probabilistic stability analysis of soil slopes using Gaussian process regression with Latin hypercube sampling. Comput Geotech 63:13–25

    Google Scholar 

  76. Snelson EL (2007) Flexible and efficient Gaussian process models for machine learning

  77. Etxeberria M, Marŕ AR, Vázquez E (2007) SRecycled aggregate concrete as structural material. Mater Struct 40:529–541

    Google Scholar 

  78. Al-Zahraa F, El-Mihilmy MT, Bahaa T (2011) Experimental investigation of shear strength of concrete beams with recycled concrete aggregates. Int J Mater Struct Integr 5(4):291–310

    Google Scholar 

  79. Rahal KN, Alrefaei YT (2017) Shear strength of longitudinally reinforced recycled aggregate concrete beams. Eng Struct 145:273–282

    Google Scholar 

  80. Etman EE, Afefy HM, Baraghith AT, Khedr SA (2018) Improving the shear performance of reinforced concrete beams made of recycled coarse aggregate. Constr Build Mater 185:310–324

    Google Scholar 

  81. Rahal KN, Alrefaei YT (2018) Shear strength of recycled aggregate concrete beams containing stirrups. Constr Build Mater 191:866–876

    Google Scholar 

  82. Moore CJ, Chua AJK, Berry CPL, Gair JR (2016) Fast methods for training Gaussian processes on large datasets. R Soc Open Sci 3:160125

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirhosein Sahraei Moghadam.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

\({\text{Reference}}\) s

\({\text{ID}}\)

Input data

Output data

RCA

\(b\)

\(d\)

\(a/d\)

\(L/d\)

\(\rho_{l}\)

\(\rho_{t}\)

\(f_{c}^{{\prime}}\)

\(f_{dy}\)

\(f_{ty}\)

\(v_{U}\)

(%)

(mm)

(mm)

(-)

(-)

(%)

(%)

(MPa)

(MPa)

(MPa)

(MPa)

[18]

NS-4-CC1

0

300

400

3

10.75

1.27

0

37.3

449

0

1

NS-4-CC2

0

300

400

3

10.75

1.27

0

34.2

449

0

1.1

NS-6-CC1

0

300

400

3

10.75

2.03

0

37.3

449

0

1.3

NS-6-CC2

0

300

400

3

10.75

2.03

0

34.2

449

0

1.5

NS-8-CC1

0

300

400

3

10.75

2.71

0

37.3

449

0

1.5

NS-8-CC2

0

300

400

3

10.75

2.71

0

34.2

449

0

1.5

NS-4-CC1

100

300

400

3

10.75

1.27

0

30

449

0

0.9

NS-4-CC2

100

300

400

3

10.75

1.27

0

34.1

449

0

0.9

NS-6-CC1

100

300

400

3

10.75

2.03

0

30

449

0

1.3

NS-6-CC2

100

300

400

3

10.75

2.03

0

34.1

449

0

1.1

NS-8-CC1

100

300

400

3

10.75

2.71

0

30

449

0

1.2

NS-8-CC2

100

300

400

3

10.75

2.71

0

34.1

449

0

1.2

[23]

EM-1.5

63.5

200

300

1.5

6.33

1

0

41.6

440

0

3.1

EM-2

63.5

200

300

2

7.33

1.5

0

41.4

440

0

2.8

EM-2.7

63.5

200

309

2.59

8.41

1.62

0

41.6

440

0

1.7

CL-2.7

0

200

309

2.59

8.41

1.62

0

37.95

440

0

1.5

EM-4

63.5

200

305

3.93

11.15

2.46

0

41.6

440

0

1.4

EV-2

74.3

200

300

2

7.33

1.5

0

49.1

440

0

3

EV-4

74.3

200

305

3.93

11.15

2.46

0

49.1

440

0

1.7

EM-L

63.5

200

201

2.69

10.35

1.99

0

41.6

440

0

2.2

EM-M

63.5

200

309

2.59

8.41

1.62

0

41.6

440

0

1.7

CL-M

0

200

309

2.59

8.41

1.62

0

37.95

440

0

1.5

EM-H

63.5

200

381

2.73

8.35

1.83

0

41.6

440

0

1.3

EM-VH

63.5

200

476

2.73

7.77

1.68

0

41.6

440

0

1.1

EV-H

74.3

200

381

2.73

8.35

1.83

0

41.6

440

0

1.5

EV-VH

74.3

200

476

2.73

7.77

1.68

0

49.1

440

0

1.3

[71]

S0-1a

0

150

200

3.825

9.9

1.34

0

38.6

572

0

1.04

S0-1b

0

150

200

3.825

9.9

1.34

0

46.5

572

0

1.23

S0-2a

50

150

200

3.825

9.9

1.34

0

40

572

0

1.35

S0-2b

50

150

200

3.825

9.9

1.34

0

39.3

572

0

1.41

S50-1a

100

150

200

3.825

9.9

1.34

0

43.8

572

0

1.47

S50-1b

100

150

200

3.825

9.9

1.34

0

38.5

572

0

1.3

S50-2a

0

150

200

3.825

9.9

1.34

0

32.6

572

0

1.46

S50-2b

0

150

200

3.825

9.9

1.34

0

50.3

572

0

1.37

S100-1a

50

150

200

3.825

9.9

1.34

0

43.6

572

0

1.21

S100-1b

50

150

200

3.825

9.9

1.34

0

40.2

572

0

1.27

S100-2a

100

150

200

3.825

9.9

1.34

0

41.4

572

0

1.33

S100-2b

100

150

200

3.825

9.9

1.34

0

35.7

572

0

1.2

[20]

V0CC

0

200

303

3.3

10.07

2.98

0

40.2

571

0

1.47

V0RC

50

200

303

3.3

10.07

2.98

0

39.65

571

0

1.5

V24RC

50

200

303

3.3

10.07

2.98

0.12

39.23

571

571

2.71

V17CC

0

200

303

3.3

10.07

2.98

0.17

39.08

571

571

2.49

V17RC

50

200

303

3.3

10.07

2.98

0.17

41.49

571

571

2.92

V13CC

0

200

303

3.3

10.07

2.98

0.22

37.66

571

571

3.14

[21]

V0CC

0

200

303

3.3

10.07

2.98

0

46.77

571

0

1.66

V0RC

50

200

303

3.3

10.07

2.98

0

41.45

571

0

1.38

V24CC

0

200

303

3.3

10.07

2.98

0.12

43.66

571

571

2.48

V24RC

50

200

303

3.3

10.07

2.98

0.12

43.25

571

571

2.43

V17CC

0

200

303

3.3

10.07

2.98

0.17

45.16

571

571

3.3

V17RC

50

200

303

3.3

10.07

2.98

0.17

44.49

571

571

3.18

V13CC

0

200

303

3.3

10.07

2.98

0.22

42.75

571

571

3.63

V13RC

50

200

303

3.3

10.07

2.98

0.22

41.45

571

571

3.34

[32]

ORNm-b2

100

200

250

3.2

10.4

1.61

0.28

58.3

410

210

2.37

GNNI-b2

0

200

250

3.2

10.4

1.61

0.28

38.7

410

210

2.17

GRNI-b2

100

200

250

3.2

10.4

1.61

0.28

39.3

410

210

2.33

GRRI-b2

100

200

250

3.2

10.4

1.61

0.28

35.8

410

210

2.26

GRNm-b2

100

200

250

3.2

10.4

1.61

0.28

59.6

410

210

2.37

GNNh-b2

0

200

250

3.2

10.4

1.61

0.28

93.4

410

210

2.5

GRNh-b2

100

200

250

3.2

10.4

1.61

0.28

89.1

410

210

2.42

GRRh-b2

100

200

250

3.2

10.4

1.61

0.28

82.2

410

210

2.55

BNNI-b2

0

200

250

3.2

10.4

1.61

0.28

60.8

410

210

2.38

BRNI-b2

100

200

250

3.2

10.4

1.61

0.28

59.6

410

210

2.38

BRRI-b2

100

200

250

3.2

10.4

1.61

0.28

57.6

410

210

2.36

BNNh-b2

0

200

250

3.2

10.4

1.61

0.28

100.9

410

210

2.62

BRNh-b2

100

200

250

3.2

10.4

1.61

0.28

107.8

410

210

2.61

BRRh-b2

100

200

250

3.2

10.4

1.61

0.28

100.5

410

210

2.56

[72]

HC-1

0

200

309

3.2

9.9

2.92

0

41.91

500

0

1.63

HC-2

0

200

309

3.2

9.9

2.97

0.22

41.91

500

500

3.45

HC-3

0

200

309

3.2

9.9

2.97

0.17

41.91

500

500

2.86

HR25-1

25

200

309

3.2

9.9

2.92

0

42.38

500

0

1.68

HR25-2

25

200

309

3.2

9.9

2.97

0.22

42.38

500

500

3.02

HR25-3

25

200

309

3.2

9.9

2.97

0.17

42.38

500

500

2.73

HR50-1

50

200

309

3.2

9.9

2.92

0

41.34

500

0

1.44

HR50-2

50

200

309

3.2

9.9

2.97

0.22

41.34

500

500

3.56

HR50-3

50

200

309

3.2

9.9

2.97

0.17

41.34

500

500

2.85

HR100-1

100

200

309

3.2

9.9

2.92

0

39.75

500

0

1.36

HR100-2

100

200

309

3.2

9.9

2.97

0.22

39.75

500

500

3.07

HR100-3

100

200

309

3.2

9.9

2.97

0.17

39.76

500

500

2.64

[77]

B2

25

100

180

2

9.4

1.9

0

30.42

560

0

2.4

B3

50

100

180

2

9.4

1.9

0

29.58

560

0

1.97

B4

0

100

180

2

9.4

1.9

0.3

31.67

560

305

2.47

B5

25

100

180

2

9.4

1.9

0.3

36.25

560

305

2.76

B6

50

100

180

2

9.4

1.9

0.3

29.58

560

305

2.33

B8

25

100

180

2

9.4

1.9

0.5

36.25

560

305

3.39

B11

25

100

180

2.5

9.4

1.9

0.3

30.42

560

305

2.63

B12

50

100

180

2.5

9.4

1.9

0.3

29.58

560

305

1.9

[78]

35-A-0-0

0

150

388

3

7.47

0.79

0

35.8

534

0

0.946

35-A-0-100

100

150

388

3

7.47

0.79

0

31

534

0

0.74

35-A-0-10

10

150

388

3

7.47

0.79

0

34.3

534

0

0.774

35-A-0-20

20

150

388

3

7.47

0.79

0

34.1

534

0

0.698

35-A-0-20r

20

150

388

3

7.47

0.79

0

34.2

534

0

0.85

35-A-0-35

35

150

388

3

7.47

0.79

0

32.5

534

0

0.784

35-A-0-50

50

150

388

3

7.47

0.79

0

34.4

534

0

0.816

35-A-0-75

75

150

388

3

7.47

0.79

0

33.7

534

0

0.824

35-S-0-05 (10)

5

150

388

3

7.47

0.79

0

39

534

0

0.972

35-S-0-10 (20)

10

150

388

3

7.47

0.79

0

37.3

534

0

0.912

35-S-0-16 (35)

16

150

388

3

7.47

0.79

0

37.4

534

0

0.941

35-S-0-23(50)

23

150

388

3

7.47

0.79

0

37.1

534

0

0.821

35-S-0-35(75)

35

150

388

3

7.47

0.79

0

36.4

534

0

0.74

[79]

0-30

30

150

200

3

9.75

2.09

0.15

20.9

560

560

2.7

30-0

30

150

200

3

9.75

2.09

0.15

22

560

560

2.58

30-30

30

150

200

3

9.75

2.09

0.15

22.1

560

560

2.85

0-100

100

150

200

3

9.75

2.09

0.15

25.7

560

560

2.87

100-100

100

150

200

3

9.75

2.09

0.15

19.6

560

560

2.27

[80]

B1-2-0-0

0

150

250

2

8

2.1

0

28.8

420

0

2.37

B2-2-15-0

15

150

250

2

8

2.1

0

28.2

420

0

2.19

B2-2-30-0

30

150

250

2

8

2.1

0

26.9

420

0

2.04

B3-2-45-0

45

150

250

2

8

2.1

0

25

420

0

1.92

B3-1-30-0

30

150

250

1

8

2.1

0

26.9

420

0

2.33

B3-3-30-0

30

150

250

3

8

2.1

0

26.9

420

0

1.51

[81]

35-1.1-0

0

150

388

3

7.47

1.38

0.39

33.2

565

308

1.26

35-1.7-0

0

150

388

3

7.47

1.38

0.61

35

565

308

1.42

35-2-0

0

150

388

3

7.47

1.38

0.75

34

565

308

2.13

35-2.6-0

0

150

388

3

7.47

1.38

0.97

35

565

308

1.86

35-3.2-0

0

150

388

3

7.47

1.38

1.16

34

565

308

2.54

35-3.7-0

0

150

388

3

7.47

1.38

1.37

33.2

565

308

2.46

35-1.1-20

20

150

388

3

7.47

1.38

0.39

35.1

565

308

1.16

35-1.7-20

20

150

388

3

7.47

1.38

0.61

35.7

565

308

1.34

35-2-20

20

150

388

3

7.47

1.38

0.75

35.4

565

308

2.03

35-2.6-20

20

150

388

3

7.47

1.38

0.97

35.7

565

308

2.05

35-3.2-20

20

150

388

3

7.47

1.38

1.16

35.4

565

308

2.45

35-3.7-20

20

150

388

3

7.47

1.38

1.37

35.1

565

308

2.33

35-1.1-100

100

150

388

3

7.47

1.38

0.39

32.7

565

308

1.13

35-1.7-100

100

150

388

3

7.47

1.38

0.61

32.7

565

308

1.43

35-2-100

100

150

388

3

7.47

1.38

0.75

33.8

565

308

1.79

35-2.6-100

100

150

388

3

7.47

1.38

0.97

32.7

565

308

1.81

35-3.2-100

100

150

388

3

7.47

1.38

1.16

33.8

565

308

2.24

35-3.7-100

100

150

388

3

7.47

1.38

1.37

32.7

565

308

2.07

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omidinasab, F., Sahraei Moghadam, A. & Dowlatshahi, M.B. Predictive model for shear strength estimation in reinforced concrete beams with recycled aggregates using Gaussian process regression. Neural Comput & Applic 35, 8487–8503 (2023). https://doi.org/10.1007/s00521-022-08126-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-08126-z

Keywords

Navigation