Skip to main content
Log in

Toward human activity recognition: a survey

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Human activity recognition (HAR) is a complex and multifaceted problem. The research community has reported numerous approaches to perform HAR. Along with HAR approaches, various surveys have revealed HAR trends in various environments and applications. HAR is linked to a variety of technology-dependent daily life systems, such as human–computer interaction systems, security surveillance, video surveillance, healthcare surveillance, robotics, content-based information retrieval, and monitoring systems. Because of technological advancements, HAR trends change quickly and necessitate an up-to-date and broader perspective. This study offers an HAR taxonomy, which includes online/offline HAR, multimodal/unimodal HAR, handcrafted feature-based, and learning-based approaches. This study attempts to present the multidisciplinary nature of HAR, such as application areas, activity types, task complexities, benchmark datasets, and/methods. This research includes a comparative analysis of state-of-the-art HAR methods and a discussion of popular datasets. The selected studies have been categorized using taxonomy, and different attributes such as activity complexity, dataset size, and recognition rate have been used for their analysis. The comparative analysis of HAR approaches has also helped to highlight domain challenges and open research directions for HAR researchers to follow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were produced or analyzed during the current study. However, this study is based on analyzing existing methods, and their sources are added to the manuscript.

References

  1. Beddiar DR, Nini B, Sabokrou M, Hadid A (2020) Vision-based human activity recognition: a survey. Multimed Tools Appl 79(41):30509–30555

    Article  Google Scholar 

  2. Huang S-C (2010) An advanced motion detection algorithm with video quality analysis for video surveillance systems. IEEE Trans Circuits Syst Video Technol 21(1):1–14

    Article  Google Scholar 

  3. Cheng F-C, Huang S-C, Ruan S-J (2010) "Scene analysis for object detection in advanced surveillance systems using Laplacian distribution model. IEEE Trans Syst Man Cybern Part C 41(5):589–598

    Article  Google Scholar 

  4. Oral M, Deniz U (2007) Centre of mass model–a novel approach to background modelling for segmentation of moving objects. Image Vis Comput 25(8):1365–1376

    Article  Google Scholar 

  5. Yilmaz A, Li X, Shah M (2004) Contour-based object tracking with occlusion handling in video acquired using mobile cameras. IEEE Trans Pattern Anal Mach Intell 26(11):1531–1536

    Article  Google Scholar 

  6. Bernardin K, Stiefelhagen R (2008) Evaluating multiple object tracking performance: the CLEAR MOT metrics. EURASIP J Image Video Process 2008:1–10

    Article  Google Scholar 

  7. Bolme DS, Beveridge JR, Draper BA, Lui YM (2010) Visual object tracking using adaptive correlation filters. In: 2010 IEEE computer society conference on computer vision and pattern recognition, IEEE, pp 2544–2550

  8. Cucchiara R, Grana C, Piccardi M, Prati A (2003) Detecting moving objects, ghosts, and shadows in video streams. IEEE Trans Pattern Anal Mach Intell 25(10):1337–1342

    Article  Google Scholar 

  9. Denman S, Fookes C, Sridharan S (2009) Improved simultaneous computation of motion detection and optical flow for object tracking. In: 2009 Digital image computing: techniques and applications, IEEE, pp 175–182

  10. Ince S, Konrad J (2008) Occlusion-aware optical flow estimation. IEEE Trans Image Process 17(8):1443–1451

    Article  Google Scholar 

  11. Morris BT, Trivedi MM (2008) A survey of vision-based trajectory learning and analysis for surveillance. IEEE Trans Circuits Syst Video Technol 18(8):1114–1127

    Article  Google Scholar 

  12. Laptev I (2005) On space-time interest points. Int J Comput Vision 64(2–3):107–123

    Article  Google Scholar 

  13. Blunsom P (2004) Maximum entropy markov models for semantic role labelling. Proc Australasian Lang Technol Workshop 2004:109–116

    Google Scholar 

  14. Nunez JC, Cabido R, Pantrigo JJ, Montemayor AS, Velez JF (2018) Convolutional neural networks and long short-term memory for skeleton-based human activity and hand gesture recognition. Pattern Recogn 76:80–94

    Article  Google Scholar 

  15. Chen X, Guo H, Wang G, Zhang L (2017) Motion feature augmented recurrent neural network for skeleton-based dynamic hand gesture recognition. In: 2017 IEEE international conference on image processing (ICIP), IEEE, pp 2881–2885

  16. Li C, Hou Y, Wang P, Li W (2017) Joint distance maps based action recognition with convolutional neural networks. IEEE Signal Process Lett 24(5):624–628

    Article  Google Scholar 

  17. Kerber F, Puhl M, Krüger A (2017) User-independent real-time hand gesture recognition based on surface electromyography. In: Proceedings of the 19th international conference on human-computer interaction with mobile devices and services, pp 1–7

  18. Vishwakarma S, Agrawal A (2013) A survey on activity recognition and behavior understanding in video surveillance. Vis Comput 29(10):983–1009

    Article  Google Scholar 

  19. Zhen X, Shao L, Maybank S, Chellappa R (2016) Handcrafted vs. learned representations for human action recognition. Image Vis Comput 55(2):39–41

    Article  Google Scholar 

  20. Sargano AB, Angelov P, Habib Z (2017) A comprehensive review on handcrafted and learning-based action representation approaches for human activity recognition. Appl Sci 7(1):110

    Article  Google Scholar 

  21. Ke S-R, Thuc HLU, Lee Y-J, Hwang J-N, Yoo J-H, Choi K-H (2013) A review on video-based human activity recognition. Computers 2(2):88–131

    Article  Google Scholar 

  22. Cheng G, Wan Y, Saudagar A, Namuduri K, Buckles B (2015) Advances in human action recognition: a survey. arXiv preprint arXiv:1501.05964

  23. Dawn DD, Shaikh SH (2016) A comprehensive survey of human action recognition with spatio-temporal interest point (STIP) detector. Vis Comput 32(3):289–306

    Article  Google Scholar 

  24. Vrigkas M, Nikou C, Kakadiaris IA (2015) A review of human activity recognition methods. Front Robot AI 2:28

    Article  Google Scholar 

  25. Herath S, Harandi M, Porikli F (2017) Going deeper into action recognition: a survey. Image Vis Comput 60:4–21

    Article  Google Scholar 

  26. Jegham I, Khalifa AB, Alouani I, Mahjoub MA (2020) Vision-based human action recognition: an overview and real world challenges. Forensic Sci Int Digit Invest 32:200901

    Article  Google Scholar 

  27. Wang Z et al (2019) A survey on human behavior recognition using channel state information. IEEE Access 7:155986–156024

    Article  Google Scholar 

  28. Rodríguez-Moreno I, Martínez-Otzeta JM, Sierra B, Rodriguez I, Jauregi E (2019) Video activity recognition: state-of-the-art. Sensors 19(14):3160

    Article  Google Scholar 

  29. Liu J, Liu H, Chen Y, Wang Y, Wang C (2019) Wireless sensing for human activity: a survey. IEEE Commun Surv Tutor 22(3):1629–1645

    Article  Google Scholar 

  30. Dang LM, Min K, Wang H, Piran MJ, Lee CH, Moon H (2020) Sensor-based and vision-based human activity recognition: a comprehensive survey. Pattern Recogn 108:107561

    Article  Google Scholar 

  31. Chaurasia SK, Reddy S (2022) State-of-the-art survey on activity recognition and classification using smartphones and wearable sensors. Multimedia Tools Appl 81(1):1077–1108

    Article  Google Scholar 

  32. Yao G, Lei T, Zhong J (2019) A review of convolutional-neural-network-based action recognition. Pattern Recogn Lett 118:14–22

    Article  Google Scholar 

  33. Zhang H-B et al (2019) A comprehensive survey of vision-based human action recognition methods. Sensors 19(5):1005

    Article  Google Scholar 

  34. Das B, Saha A (2021) A survey on current trends in human action recognition. In: Advances in medical physics and healthcare engineering, Springer, pp 443–453

  35. Gupta N, Gupta SK, Pathak RK, Jain V, Rashidi P, Suri JS (2022) Human activity recognition in artificial intelligence framework: a narrative review. Artif Intell Rev 3:1–54

    Google Scholar 

  36. Zhu F, Shao L, Xie J, Fang Y (2016) From handcrafted to learned representations for human action recognition: a survey. Image Vis Comput 55:42–52

    Article  Google Scholar 

  37. Tripathi RK, Jalal AS, Agrawal SC (2018) Suspicious human activity recognition: a review. Artif Intell Rev 50(2):283–339

    Article  Google Scholar 

  38. Chaquet JM, Carmona EJ, Fernández-Caballero A (2013) A survey of video datasets for human action and activity recognition. Comput Vis Image Underst 117(6):633–659

    Article  Google Scholar 

  39. Zhang J, Li W, Ogunbona PO, Wang P, Tang C (2016) RGB-D-based action recognition datasets: a survey. Pattern Recogn 60:86–105

    Article  Google Scholar 

  40. Singh T, Vishwakarma DK (2019) Video benchmarks of human action datasets: a review. Artif Intell Rev 52(2):1107–1154

    Article  Google Scholar 

  41. Wang J, Nie X, Xia Y, Wu Y, Zhu S-C (2014) Cross-view action modeling, learning and recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2649–2656

  42. Schuldt C, Laptev I, Caputo B (2004) Recognizing human actions: a local SVM approach. In: Proceedings of the 17th international conference on pattern recognition, 2004. ICPR 2004, vol. 3: IEEE, pp 32–36

  43. Gorelick L, Blank M, Shechtman E, Irani M, Basri R (2007) Actions as space-time shapes. IEEE Trans Pattern Anal Mach Intell 29(12):2247–2253

    Article  Google Scholar 

  44. Xia L, Chen C-C, Aggarwal JK (2012) View invariant human action recognition using histograms of 3d joints. In: 2012 IEEE computer society conference on computer vision and pattern recognition workshops, IEEE, pp 20–27

  45. Soomro K, Zamir AR, Shah M (2012) A dataset of 101 human action classes from videos in the wild. Center Res Comput Vis 2:666

    Google Scholar 

  46. Rahmani A, Mahmood A, Huynh D, Mian A (2014) Action classification with locality-constrained linear coding. In: 2014 22nd international conference on pattern recognition, IEEE, pp 3511–3516

  47. Weinland D, Ronfard R, Boyer E (2006) Free viewpoint action recognition using motion history volumes. Comput Vis Image Underst 104(2–3):249–257

    Article  Google Scholar 

  48. Niebles JC, Chen C-W, Fei-Fei L (2010) Modeling temporal structure of decomposable motion segments for activity classification. European conference on computer vision. Springer, Berlin, pp 392–405

    Google Scholar 

  49. Marszalek M, Laptev I, Schmid C (2009) Actions in context. In: 2009 IEEE conference on computer vision and pattern recognition, IEEE, pp 2929–2936

  50. Reddy KK, Shah M (2013) Recognizing 50 human action categories of web videos. Mach Vis Appl 24(5):971–981

    Article  Google Scholar 

  51. Karpathy A, Toderici G, Shetty S, Leung T, Sukthankar R, Fei-Fei L (2014) Large-scale video classification with convolutional neural networks. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp 1725–1732

  52. Heilbron FC, Escorcia V, Ghanem B, Niebles JC (2015) Activitynet: A large-scale video benchmark for human activity understanding. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 961–970

  53. Abu-El-Haija S et al. (2016) Youtube-8m: A large-scale video classification benchmark. arXiv preprint arXiv:1609.08675

  54. Kuehne H, Jhuang H, Garrote E, Poggio T, Serre T (2011) HMDB: a large video database for human motion recognition. In: 2011 international conference on computer vision, IEEE, pp 2556–2563

  55. Yu S, Tan D, Tan T (2006) A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In: 18th international conference on pattern recognition (ICPR'06), vol 4: IEEE, pp 441–444

  56. Gu C et al. (2018) Ava: a video dataset of spatio-temporally localized atomic visual actions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 6047–6056

  57. Sultani W, Chen C, Shah M (2018) Real-world anomaly detection in surveillance videos. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 6479–6488

  58. Li W, Zhang Z, Liu Z (2010) Action recognition based on a bag of 3d points. In: 2010 IEEE computer society conference on computer vision and pattern recognition-workshops, IEEE, pp 9–14

  59. Berclaz J, Fleuret F, Turetken E, Fua P (2011) Multiple object tracking using k-shortest paths optimization. IEEE Trans Pattern Anal Mach Intell 33(9):1806–1819

    Article  Google Scholar 

  60. Hu J-F, Zheng W-S, Ma L, Wang G, Lai J (2016) Real-time RGB-D activity prediction by soft regression. European Conference on Computer Vision. Springer, Berlin, pp 280–296

    Google Scholar 

  61. Sung J, Ponce C, Selman B, Saxena A (2012) Unstructured human activity detection from rgbd images. In: 2012 IEEE international conference on robotics and automation, IEEE, pp 842–849

  62. Koppula HS, Gupta R, Saxena A (2013) Learning human activities and object affordances from rgb-d videos. Int J Robot Res 32(8):951–970

    Article  Google Scholar 

  63. Chen C, Jafari R, Kehtarnavaz N (2015) UTD-MHAD: a multimodal dataset for human action recognition utilizing a depth camera and a wearable inertial sensor. In: 2015 IEEE international conference on image processing (ICIP), IEEE, pp 168–172

  64. Ni B, Wang G, Moulin P (2011) Rgbd-hudaact: A color-depth video database for human daily activity recognition. In: 2011 IEEE international conference on computer vision workshops (ICCV workshops), IEEE, pp 1147–1153

  65. Ofli F, Chaudhry R, Kurillo G, Vidal R, Bajcsy R (2013) Berkeley mhad: a comprehensive multimodal human action database. In: 2013 IEEE workshop on applications of computer vision (WACV), IEEE, pp 53–60

  66. Wolf C et al (2014) Evaluation of video activity localizations integrating quality and quantity measurements. Comput Vis Image Underst 127:14–30

    Article  Google Scholar 

  67. Bloom V, Argyriou V, Makris D (2014) G3di: A gaming interaction dataset with a real time detection and evaluation framework. European conference on computer vision. Springer, Berlin, pp 698–712

    Google Scholar 

  68. Shahroudy A, Liu J, Ng T-T, Wang G (2016) Ntu rgb+ d: a large scale dataset for 3d human activity analysis. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1010–1019

  69. Van Gemeren C, Tan RT, Poppe R, Veltkamp RC (2014) Dyadic interaction detection from pose and flow. International Workshop on Human Behavior Understanding. Springer, Berlin, pp 101–115

    Chapter  Google Scholar 

  70. Jalal A, Kim Y-H, Kim Y-J, Kamal S, Kim D (2017) Robust human activity recognition from depth video using spatiotemporal multi-fused features. Pattern Recogn 61:295–308

    Article  Google Scholar 

  71. Lin J, Gan C, Han S (2019) Tsm: temporal shift module for efficient video understanding. In: Proceedings of the IEEE international conference on computer vision, pp 7083–7093

  72. Soomro K, Idrees H, Shah M (2016) Predicting the where and what of actors and actions through online action localization. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2648–2657

  73. Singh G, Saha S, Sapienza M, Torr PH, Cuzzolin F (2017) Online real-time multiple spatiotemporal action localisation and prediction. In: Proceedings of the IEEE international conference on computer vision, pp 3637–3646

  74. Zolfaghari M, Singh K, Brox T (2018) Eco: efficient convolutional network for online video understanding. In: Proceedings of the European conference on computer vision (ECCV), pp 695–712

  75. Xu M, Gao M, Chen Y-T, Davis LS, Crandall DJ (2019) Temporal recurrent networks for online action detection. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 5532–5541

  76. Gao M, Zhou Y, Xu R, Socher R, Xiong C (2020) WOAD: weakly supervised online action detection in untrimmed videos. arXiv preprint arXiv:2006.03732

  77. Ye Y, Li K, Qi G-J, Hua KA (2015) Temporal order-preserving dynamic quantization for human action recognition from multimodal sensor streams. In: Proceedings of the 5th ACM on international conference on multimedia retrieval, pp 99–106

  78. Vrigkas M, Nikou C, Kakadiadis IA (2014) Classifying behavioral attributes using conditional random fields. Hellenic conference on artificial intelligence. Springer, Berlin, pp 95–104

    Google Scholar 

  79. Shahroudy A, Ng T-T, Yang Q, Wang G (2015) Multimodal multipart learning for action recognition in depth videos. IEEE Trans Pattern Anal Mach Intell 38(10):2123–2129

    Article  Google Scholar 

  80. Wu Z, Jiang Y-G, Wang X, Ye H, Xue X, Wang J (2015) Fusing multi-stream deep networks for video classification. arXiv preprint arXiv:1509.06086

  81. Mukherjee S, Anvitha L, Lahari TM (2018) Human activity recognition in RGB-D videos by dynamic images. arXiv preprint arXiv:1807.02947

  82. Zhang C, Tian Y, Guo X, Liu J (2018) DAAL: deep activation-based attribute learning for action recognition in depth videos. Comput Vis Image Underst 167:37–49

    Article  Google Scholar 

  83. Franco A, Magnani A, Maio D (2020) A multimodal approach for human activity recognition based on skeleton and RGB data. Pattern Recogn Lett 131:293–299

    Article  Google Scholar 

  84. Bobick AF, Davis JW (2001) The recognition of human movement using temporal templates. IEEE Trans Pattern Anal Mach Intell 23(3):257–267

    Article  Google Scholar 

  85. Hu Y, Cao L, Lv F, Yan S, Gong Y, Huang TS (2009) Action detection in complex scenes with spatial and temporal ambiguities. In: 2009 IEEE 12th international conference on computer vision, IEEE, pp 128–135

  86. Roh M-C, Shin H-K, Lee S-W (2010) View-independent human action recognition with volume motion template on single stereo camera. Pattern Recogn Lett 31(7):639–647

    Article  Google Scholar 

  87. Qian H, Mao Y, Xiang W, Wang Z (2010) Recognition of human activities using SVM multi-class classifier. Pattern Recogn Lett 31(2):100–111

    Article  Google Scholar 

  88. Kim W, Lee J, Kim M, Oh D, Kim C (2010) Human action recognition using ordinal measure of accumulated motion. EURASIP J Adv Signal Process 2010(1):1–11

    Article  Google Scholar 

  89. Ijsselmuiden J, Stiefelhagen R (2010) Towards high-level human activity recognition through computer vision and temporal logic. Annual conference on artificial intelligence. Springer, Berlin, pp 426–435

    Google Scholar 

  90. Fang C-H, Chen J-C, Tseng C-C, Lien J-JJ (2009) Human action recognition using spatio-temporal classification. Asian conference on computer vision. Springer, Berlin, pp 98–109

    Google Scholar 

  91. Ziaeefard M, Ebrahimnezhad H (2010) Hierarchical human action recognition by normalized-polar histogram. In: 2010 20th international conference on pattern recognition, IEEE, pp 3720–3723

  92. Wang Y, Mori G (2009) Human action recognition by semilatent topic models. IEEE Trans Pattern Anal Mach Intell 31(10):1762–1774

    Article  Google Scholar 

  93. Guo K, Ishwar P, Konrad J (2009) Action recognition in video by covariance matching of silhouette tunnels. In: 2009 XXII Brazilian symposium on computer graphics and image processing, IEEE, pp 299–306

  94. Kim T-K, Cipolla R (2008) Canonical correlation analysis of video volume tensors for action categorization and detection. IEEE Trans Pattern Anal Mach Intell 31(8):1415–1428

    Google Scholar 

  95. Messing R, Pal C, Kautz H (2009) Activity recognition using the velocity histories of tracked keypoints. In: 2009 IEEE 12th international conference on computer vision, IEEE, pp 104–111

  96. Wang H, Kläser A, Schmid C, Liu C-L (2011) Action recognition by dense trajectories. In: CVPR 2011, IEEE, pp 3169–3176

  97. Dollár P, Rabaud V, Cottrell G, Belongie S (2005) Behavior recognition via sparse spatio-temporal features. In: 2005 IEEE international workshop on visual surveillance and performance evaluation of tracking and surveillance, IEEE, pp 65–72

  98. Jones S, Shao L, Zhang J, Liu Y (2012) Relevance feedback for real-world human action retrieval. Pattern Recogn Lett 33(4):446–452

    Article  Google Scholar 

  99. Gilbert A, Illingworth J, Bowden R (2009) Fast realistic multi-action recognition using mined dense spatio-temporal features. In: 2009 IEEE 12th international conference on computer vision, IEEE, pp 925–931

  100. Sadek S, Al-Hamadi A, Michaelis B, Sayed U (2011) An action recognition scheme using fuzzy log-polar histogram and temporal self-similarity. EURASIP J Adv Signal Process 2011(1):540375

    Article  Google Scholar 

  101. Ikizler-Cinbis N, Sclaroff S (2010) Object, scene and actions: Combining multiple features for human action recognition. European conference on computer vision. Springer, Berlin, pp 494–507

    Google Scholar 

  102. Minhas R, Baradarani A, Seifzadeh S, Wu QJ (2010) Human action recognition using extreme learning machine based on visual vocabularies. Neurocomputing 73(10–12):1906–1917

    Article  Google Scholar 

  103. Darrell T, Pentland A (1993) Space-time gestures. In: Proceedings of IEEE conference on computer vision and pattern recognition, IEEE, pp 335–340

  104. Gavrila DM, Davis LS (1996) 3-D model-based tracking of humans in action: a multi-view approach. In: Proceedings cvpr ieee computer society conference on computer vision and pattern recognition, IEEE, pp 73–80

  105. Veeraraghavan A, Chellappa R, Roy-Chowdhury AK (2006) The function space of an activity. In: 2006 IEEE Computer society conference on computer vision and pattern recognition (CVPR'06), vol 1: IEEE, pp 959–968

  106. Yacoob Y, Black MJ (1999) Parameterized modeling and recognition of activities. Comput Vis Image Underst 73(2):232–247

    Article  Google Scholar 

  107. Efros AA, Berg AC, Mori G, Malik J (2003) Recognizing action at a distance. In: Null, IEEE, p 726

  108. Lublinerman R, Ozay N, Zarpalas D, Camps O (2006) Activity recognition from silhouettes using linear systems and model (in) validation techniques. In: 18th international conference on pattern recognition (ICPR'06), vol 1: IEEE, pp 347–350

  109. Jiang H, Drew MS, Li Z-N (2006) Successive convex matching for action detection. In: 2006 IEEE Computer society conference on computer vision and pattern recognition (CVPR'06), vol 2: IEEE, pp 1646–1653

  110. Lin Z, Jiang Z, Davis LS (2009) Recognizing actions by shape-motion prototype trees. In: 2009 IEEE 12th international conference on computer vision, IEEE, pp 444–451

  111. Yamato J, Ohya J, Ishii K (1992) Recognizing human action in time-sequential images using hidden markov model. CVPR 92:379–385

    Google Scholar 

  112. Starner T, Pentland A (1997) Real-time american sign language recognition from video using hidden Markov models. In: Motion-based recognition, Springer, pp 227–243

  113. Vogler C, Metaxas D (1999) Parallel hidden Markov models for American sign language recognition. In: Proceedings of the seventh IEEE international conference on computer vision, vol 1: IEEE, pp 116–122

  114. Bobick AF, Wilson AD (1997) A state-based approach to the representation and recognition of gesture. IEEE Trans Pattern Anal Mach Intell 19(12):1325–1337

    Article  Google Scholar 

  115. Oliver NM, Rosario B, Pentland AP (2000) A Bayesian computer vision system for modeling human interactions. IEEE Trans Pattern Anal Mach Intell 22(8):831–843

    Article  Google Scholar 

  116. Park S, Aggarwal JK (2004) A hierarchical Bayesian network for event recognition of human actions and interactions. Multimedia Syst 10(2):164–179

    Article  Google Scholar 

  117. Natarajan P, Nevatia R (2007) Coupled hidden semi markov models for activity recognition. In: 2007 IEEE workshop on motion and video computing (WMVC'07), IEEE, pp 10–10

  118. Gupta A, Davis LS (2007) Objects in action: An approach for combining action understanding and object perception. In: 2007 IEEE conference on computer vision and pattern recognition, IEEE, pp 1–8

  119. Moore DJ, Essa IA, Hayes MH (1999) Exploiting human actions and object context for recognition tasks. In: Proceedings of the seventh IEEE international conference on computer vision, vol 1: IEEE, pp 80–86

  120. Yu E, Aggarwal JK (2009) Human action recognition with extremities as semantic posture representation. In: 2009 IEEE computer society conference on computer vision and pattern recognition workshops, IEEE, pp 1–8

  121. Kellokumpu V, Zhao G, Pietikäinen M (2011) Recognition of human actions using texture descriptors. Mach Vis Appl 22(5):767–780

    Article  Google Scholar 

  122. Shi Q, Cheng L, Wang L, Smola A (2011) Human action segmentation and recognition using discriminative semi-Markov models. Int J Comput Vision 93(1):22–32

    Article  MATH  Google Scholar 

  123. Wang L, Suter D (2007) Recognizing human activities from silhouettes: motion subspace and factorial discriminative graphical model. In: 2007 IEEE conference on computer vision and pattern recognition, IEEE, pp 1–8

  124. Rahman SA, Cho S-Y, Leung M (2012) Recognising human actions by analysing negative spaces. IET Comput Vision 6(3):197–213

    Article  Google Scholar 

  125. Vishwakarma DK, Kapoor R (2015) Hybrid classifier based human activity recognition using the silhouette and cells. Expert Syst Appl 42(20):6957–6965

    Article  Google Scholar 

  126. Junejo IN, Junejo KN, Al Aghbari Z (2014) Silhouette-based human action recognition using SAX-Shapes. The Visual Comput 30(3):259–269

    Article  Google Scholar 

  127. Chaaraoui AA, Climent-Pérez P, Flórez-Revuelta F (2013) Silhouette-based human action recognition using sequences of key poses. Pattern Recogn Lett 34(15):1799–1807

    Article  Google Scholar 

  128. Chaaraoui AA, Flórez-Revuelta F (2014) A low-dimensional radial silhouette-based feature for fast human action recognition fusing multiple views. Int Schol Res Notices 2014:6666

    Google Scholar 

  129. Cheema S, Eweiwi A, Thurau C, Bauckhage C (2011) Action recognition by learning discriminative key poses. In: 2011 IEEE international conference on computer vision workshops (ICCV Workshops), IEEE, pp 1302–1309

  130. Chun S, Lee C-S (2016) Human action recognition using histogram of motion intensity and direction from multiple views. IET Comput Vision 10(4):250–257

    Article  Google Scholar 

  131. Murtaza F, Yousaf MH, Velastin SA (2016) Multi-view human action recognition using 2D motion templates based on MHIs and their HOG description. IET Comput Vision 10(7):758–767

    Article  Google Scholar 

  132. Ladjailia A, Bouchrika I, Merouani HF, Harrati N, Mahfouf Z (2020) Human activity recognition via optical flow: decomposing activities into basic actions. Neural Comput Appl 32(21):16387–16400

    Article  Google Scholar 

  133. Ahmad M, Lee S-W (2006) HMM-based human action recognition using multiview image sequences. In: 18th international conference on pattern recognition (ICPR'06), vol 1: IEEE, pp 263–266

  134. Pehlivan S, Forsyth DA (2014) Recognizing activities in multiple views with fusion of frame judgments. Image Vis Comput 32(4):237–249

    Article  Google Scholar 

  135. Jiang Z, Lin Z, Davis L (2012) Recognizing human actions by learning and matching shape-motion prototype trees. IEEE Trans Pattern Anal Mach Intell 34(3):533–547

    Article  Google Scholar 

  136. Eweiwi A, Cheema S, Thurau C, Bauckhage C (2011) Temporal key poses for human action recognition. In: 2011 IEEE international conference on computer vision workshops (ICCV Workshops), IEEE, pp 1310–1317

  137. Shi Y, Huang Y, Minnen D, Bobick A, Essa I (2004) Propagation networks for recognition of partially ordered sequential action. In: Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition, CVPR 2004, vol. 2: IEEE, pp II–II

  138. Yin J, Meng Y (2010) Human activity recognition in video using a hierarchical probabilistic latent model. In: 2010 IEEE computer society conference on computer vision and pattern recognition-workshops, IEEE, pp 15–20

  139. Mauthner T, Roth PM, Bischof H (2010) Temporal feature weighting for prototype-based action recognition. Asian conference on computer vision. Springer, Berlin, pp 566–579

    Google Scholar 

  140. Han L, Wu X, Liang W, Hou G, Jia Y (2010) Discriminative human action recognition in the learned hierarchical manifold space. Image Vis Comput 28(5):836–849

    Article  Google Scholar 

  141. Zeng Z, Ji Q (2010) Knowledge based activity recognition with dynamic bayesian network. European conference on computer vision. Springer, Berlin, pp 532–546

    Google Scholar 

  142. Minnen D, Essa I, Starner T (2003) Expectation grammars: leveraging high-level expectations for activity recognition. In: 2003 IEEE computer society conference on computer vision and pattern recognition, 2003. Proceedings, vol 2: IEEE, pp II–II

  143. Moore D, Essa I (2002) Recognizing multitasked activities from video using stochastic context-free grammar. In: AAAI/IAAI, pp 770–776

  144. Kitani KM, Sato Y, Sugimoto A (2008) Recovering the basic structure of human activities from noisy video-based symbol strings. Int J Pattern Recognit Artif Intell 22(08):1621–1646

    Article  Google Scholar 

  145. Wang L, Wang Y, Gao W (2011) Mining layered grammar rules for action recognition. Int J Comput Vision 93(2):162–182

    Article  MATH  Google Scholar 

  146. Nevatia R, Hobbs J, Bolles B (2004) An ontology for video event representation. In: 2004 Conference on computer vision and pattern recognition workshop, IEEE, pp 119–119

  147. Ryoo MS, Aggarwal JK (2006) Recognition of composite human activities through context-free grammar based representation. In: 2006 IEEE computer society conference on computer vision and pattern recognition (CVPR'06), vol 2: IEEE, pp 1709–1718

  148. Pinhanez CS, Bobick AF (1998) Human action detection using pnf propagation of temporal constraints. In: Proceedings. 1998 IEEE computer society conference on computer vision and pattern recognition (Cat. No. 98CB36231), IEEE, pp 898–904

  149. Ghanem N, De Menthon D, Doermann D, Davis L (2004) Representation and recognition of events in surveillance video using petri nets. In: 2004 conference on computer vision and pattern recognition workshop, IEEE, pp 112–112

  150. Intille SS, Bobick AF (1999) A framework for recognizing multi-agent action from visual evidence. AAAI/IAAI 99(518–525):2

    Google Scholar 

  151. Siskind JM (2001) Grounding the lexical semantics of verbs in visual perception using force dynamics and event logic. J Artif Intell Res 15:31–90

    Article  MATH  Google Scholar 

  152. Tran SD, Davis LS (2008) Event modeling and recognition using markov logic networks. European conference on computer vision. Springer, Berlin, pp 610–623

    Google Scholar 

  153. Morariu VI, Davis LS (2011) Multi-agent event recognition in structured scenarios. In: CVPR 2011, IEEE, pp 3289–3296

  154. Wang H, Schmid C (2013) Action recognition with improved trajectories. In: Proceedings of the IEEE international conference on computer vision, pp 3551–3558

  155. Kang L, Ye P, Li Y, Doermann D (2014) Convolutional neural networks for no-reference image quality assessment. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1733–1740

  156. Banzhaf W, Nordin P, Keller RE, Francone FD (1998) Genetic programming. Springer, Berlin

    Book  MATH  Google Scholar 

  157. Shao L, Ji L, Liu Y, Zhang J (2012) Human action segmentation and recognition via motion and shape analysis. Pattern Recogn Lett 33(4):438–445

    Article  Google Scholar 

  158. Marĉelja S (1980) Mathematical description of the responses of simple cortical cells. JOSA 70(11):1297–1300

    Article  Google Scholar 

  159. Primer A, Burrus CS, Gopinath RA (1998) Introduction to wavelets and wavelet transforms. Prentice Hall, Upper Saddle River

    Google Scholar 

  160. Harris ZS (1954) Distributional structure. Word 10(2–3):146–162

    Article  Google Scholar 

  161. Guha T, Ward RK (2011) Learning sparse representations for human action recognition. IEEE Trans Pattern Anal Mach Intell 34(8):1576–1588

    Article  Google Scholar 

  162. Zheng J, Jiang Z, Phillips PJ, Chellappa R (2012) Cross-view action recognition via a transferable dictionary pair. BMVC 1:7

    Google Scholar 

  163. Zhu F, Shao L (2014) Weakly-supervised cross-domain dictionary learning for visual recognition. Int J Comput Vision 109(1–2):42–59

    Article  MATH  Google Scholar 

  164. Kim H-J, Lee JS, Yang H-S (2007) Human action recognition using a modified convolutional neural network. International symposium on neural networks. Springer, Berlin, pp 715–723

    Google Scholar 

  165. Jones JP, Palmer LA (1987) An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. J Neurophysiol 58(6):1233–1258

    Article  Google Scholar 

  166. Kim H-J, Lee J, Yang H-S (2006) A weighted FMM neural network and its application to face detection. International conference on neural information processing. Springer, Berlin, pp 177–186

    Chapter  Google Scholar 

  167. Jhuang H, Serre T, Wolf L, Poggio T (2007) A biologically inspired system for action recognition. In: 2007 IEEE 11th international conference on computer vision, IEEE, pp 1–8

  168. Shao L, Liu L, Li X (2013) Feature learning for image classification via multiobjective genetic programming. IEEE Trans Neural Netw Learn Syst 25(7):1359–1371

    Article  Google Scholar 

  169. Taylor GW, Hinton GE, Roweis ST (2007) Modeling human motion using binary latent variables. In: Advances in neural information processing systems, pp 1345–1352

  170. Baum LE, Petrie T (1966) Statistical inference for probabilistic functions of finite state Markov chains. Ann Math Stat 37(6):1554–1563

    Article  MATH  Google Scholar 

  171. Ji S, Xu W, Yang M, Yu K (2012) 3D convolutional neural networks for human action recognition. IEEE Trans Pattern Anal Mach Intell 35(1):221–231

    Article  Google Scholar 

  172. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  173. Le QV, Zou WY, Yeung SY, Ng AY (2011) Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis. In: CVPR 2011, IEEE, pp 3361–3368

  174. Hyvarinen A, Hurri J, Hoyer PO (2009) "A probabilistic approach to early computational vision. Nat Image Stat 2:666

    MATH  Google Scholar 

  175. Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2(1–3):37–52

    Article  Google Scholar 

  176. Baccouche M, Mamalet F, Wolf C, Garcia C, Baskurt A (2011) Sequential deep learning for human action recognition. International workshop on human behavior understanding. Springer, Berlin, pp 29–39

    Chapter  Google Scholar 

  177. Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y (2013) Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229

  178. Jia Y et al. (2014) Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM international conference on Multimedia, ACM, pp 675–678

  179. Ning F, Delhomme D, LeCun Y, Piano F, Bottou L, Barbano PE (2005) Toward automatic phenotyping of developing embryos from videos. IEEE Trans Image Process 14(9):1360–1371

    Article  Google Scholar 

  180. Singh T, Vishwakarma DK (2021) A deeply coupled ConvNet for human activity recognition using dynamic and RGB images. Neural Comput Appl 33(1):469–485

    Article  Google Scholar 

  181. Yao L, Qian Y (2018) Dt-3dresnet-lstm: An architecture for temporal activity recognition in videos. Pacific Rim conference on multimedia. Springer, Berlin, pp 622–632

    Google Scholar 

  182. Meng B, Liu X, Wang X (2018) Human action recognition based on quaternion spatial-temporal convolutional neural network and LSTM in RGB videos. Multimedia Tools Appl 77(20):26901–26918

    Article  Google Scholar 

  183. Qi M, Qin J, Li A, Wang Y, Luo J, Van Gool L (2018) stagnet: an attentive semantic RNN for group activity recognition. In: Proceedings of the European conference on computer vision (ECCV), pp 101–117

  184. Qi M, Wang Y, Qin J, Li A, Luo J, Van Gool L (2019) stagNet: an attentive semantic RNN for group activity and individual action recognition. IEEE Trans Circuits Syst Video Technol 30(2):549–565

    Article  Google Scholar 

  185. Muhammad K et al (2021) Human action recognition using attention based LSTM network with dilated CNN features. Futur Gener Comput Syst 125:820–830

    Article  Google Scholar 

  186. He J-Y, Wu X, Cheng Z-Q, Yuan Z, Jiang Y-G (2021) DB-LSTM: Densely-connected Bi-directional LSTM for human action recognition. Neurocomputing 444:319–331

    Article  Google Scholar 

  187. Hu K, Zheng F, Weng L, Ding Y, Jin J (2021) Action recognition algorithm of Spatio-temporal differential LSTM based on feature enhancement. Appl Sci 11(17):7876

    Article  Google Scholar 

  188. Vaswani A et al. (2017) Attention is all you need. In: Advances in neural information processing systems, pp 5998–6008

  189. Neimark D, Bar O, Zohar M, Asselmann D (2021) Video transformer network. arXiv preprint arXiv:2102.00719

  190. Plizzari C, Cannici M, Matteucci M (2021) Spatial temporal transformer network for skeleton-based action recognition. International conference on pattern recognition. Springer, Berlin, pp 694–701

    Google Scholar 

  191. Mazzia V, Angarano S, Salvetti F, Angelini F, Chiaberge M (2021) Action transformer: a self-attention model for short-time human action recognition. arXiv preprint arXiv:2107.00606

  192. Ullah A, Muhammad K, Haq IU, Baik SW (2019) Action recognition using optimized deep autoencoder and CNN for surveillance data streams of non-stationary environments. Futur Gener Comput Syst 96:386–397

    Article  Google Scholar 

  193. Chong YS, Tay YH (2017) Abnormal event detection in videos using spatiotemporal autoencoder. International symposium on neural networks. Springer, Berlin, pp 189–196

    Google Scholar 

  194. Cui R, Hua G, Wu J (2020) AP-GAN: predicting skeletal activity to improve early activity recognition. J Vis Commun Image Represent 73:102923

    Article  Google Scholar 

  195. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

  196. Wang L, Qiao Y, Tang X (2015) Action recognition with trajectory-pooled deep-convolutional descriptors. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4305–4314

  197. Sánchez J, Perronnin F, Mensink T, Verbeek J (2013) Image classification with the fisher vector: theory and practice. Int J Comput Vision 105(3):222–245

    Article  MATH  Google Scholar 

  198. Gowda SN, Sevilla-Lara L, Keller F, Rohrbach M (2021) CLASTER: clustering with reinforcement learning for zero-shot action recognition. arXiv preprint arXiv:2101.07042

  199. Liu K, Liu W, Ma H, Huang W, Dong X (2019) Generalized zero-shot learning for action recognition with web-scale video data. World Wide Web 22(2):807–824

    Article  Google Scholar 

  200. Ornek EP (2020) Zero-shot activity recognition with videos. arXiv preprint arXiv:2002.02265

  201. Taylor GW, Fergus R, LeCun Y, Bregler C (2010) Convolutional learning of spatio-temporal features. European conference on computer vision. Springer, Berlin, pp 140–153

    Google Scholar 

  202. Collobert R, Weston J (2008) A unified architecture for natural language processing: Deep neural networks with multitask learning. In: Proceedings of the 25th international conference on Machine learning, pp 160–167

  203. Yan Y, Ricci E, Subramanian R, Liu G, Sebe N (2014) Multitask linear discriminant analysis for view invariant action recognition. IEEE Trans Image Process 23(12):5599–5611

    Article  MATH  Google Scholar 

  204. Yang Q (2009) Activity recognition: linking low-level sensors to high-level intelligence. In: Twenty-first international joint conference on artificial intelligence

  205. Zheng VW, Hu DH, Yang Q (2009) Cross-domain activity recognition. In: Proceedings of the 11th international conference on Ubiquitous computing, pp 61–70

  206. Liu J, Shah M, Kuipers B, Savarese S (2011) Cross-view action recognition via view knowledge transfer. In: CVPR 2011, IEEE, pp 3209–3216

  207. Oquab M, Bottou L, Laptev I, Sivic J (2014) Learning and transferring mid-level image representations using convolutional neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1717–1724

  208. Wang H, Schmid AC, Liu C-L (2011) Action recognition by dense trajectories. Proc IEEE Conf Comput Vis Pattern Recognit 2:3169–3176

    Google Scholar 

  209. Kliper-Gross O, Gurovich Y, Hassner T, Wolf L (2012) Motion interchange patterns for action recognition in unconstrained videos. European conference on computer vision. Springer, Berlin, pp 256–269

    Google Scholar 

  210. Oneata D, Verbeek J, Schmid C (2013) Action and event recognition with fisher vectors on a compact feature set. In: Proceedings of the IEEE international conference on computer vision, pp 1817–1824

  211. Jain M, Jégou H, Bouthemy P (2013) Better exploiting motion for better action recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2555–2562

  212. Peng X, Zou C, Qiao Y, Peng Q (2014) Action recognition with stacked fisher vectors. European conference on computer vision. Springer, Berlin, pp 581–595

    Google Scholar 

  213. Simonyan K, Zisserman A (2014) Two-stream convolutional networks for action recognition in videos. arXiv preprint arXiv:1406.2199

  214. Sun L, Jia K, Yeung D-Y, Shi BE (2015) Human action recognition using factorized spatio-temporal convolutional networks. In: Proceedings of the IEEE international conference on computer vision, pp 4597–4605

  215. Wang L, Xiong Y, Wang Z, Qiao Y (2015) Towards good practices for very deep two-stream convnets. arXiv preprint arXiv:1507.02159

  216. Yue-Hei Ng J, Hausknecht M, Vijayanarasimhan S, Vinyals O, Monga R, Toderici G (2015) Beyond short snippets: deep networks for video classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4694–4702

  217. Fernando B, Gavves E, Oramas JM, Ghodrati A, Tuytelaars T (2015) Modeling video evolution for action recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5378–5387

  218. Donahue J et al. (2015) Long-term recurrent convolutional networks for visual recognition and description. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2625–2634

  219. Jiang Y-G, Dai Q, Liu W, Xue X, Ngo C-W (2015) Human action recognition in unconstrained videos by explicit motion modeling. IEEE Trans Image Process 24(11):3781–3795

    Article  MATH  Google Scholar 

  220. Lan Z, Lin M, Li X, Hauptmann AG, Raj B (2015) Beyond gaussian pyramid: Multi-skip feature stacking for action recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 204–212

  221. Tran D, Bourdev L, Fergus R, Torresani L, Paluri M (2015) Learning spatiotemporal features with 3d convolutional networks. In: Proceedings of the IEEE international conference on computer vision, pp 4489–4497

  222. Fernando B, Gould S (2016) Learning end-to-end video classification with rank-pooling. In: International conference on machine learning, PMLR, pp 1187–1196

  223. Fernando B, Anderson P, Hutter M, Gould S (2016) Discriminative hierarchical rank pooling for activity recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1924–1932

  224. Li Y, Li W, Mahadevan V, Vasconcelos N (2016) Vlad3: encoding dynamics of deep features for action recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1951–1960

  225. Feichtenhofer C, Pinz A, Zisserman A (2016) Convolutional two-stream network fusion for video action recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1933–1941

  226. Varol G, Laptev I, Schmid C (2017) Long-term temporal convolutions for action recognition. IEEE Trans Pattern Anal Mach Intell 40(6):1510–1517

    Article  Google Scholar 

  227. Singh D, Mohan CK (2017) Graph formulation of video activities for abnormal activity recognition. Pattern Recogn 65:265–272

    Article  Google Scholar 

  228. Carmona JM, Climent J (2018) Human action recognition by means of subtensor projections and dense trajectories. Pattern Recogn 81:443–455

    Article  Google Scholar 

  229. Mao F, Wu X, Xue H, Zhang R (2018) Hierarchical video frame sequence representation with deep convolutional graph network. In: Proceedings of the European conference on computer vision (ECCV) workshops, pp 0–0

  230. Siddiqi MH, Alruwaili M, Ali A (2019) A novel feature selection method for video-based human activity recognition systems. IEEE Access 7:119593–119602

    Article  Google Scholar 

  231. Zhang Y, Po LM, Liu M, Rehman YAU, Ou W, Zhao Y (2020) Data-level information enhancement: motion-patch-based Siamese convolutional neural networks for human activity recognition in videos. Expert Syst Appl 147:113203

    Article  Google Scholar 

  232. Arzani MM, Fathy M, Azirani AA, Adeli E (2020) Switching structured prediction for simple and complex human activity recognition. IEEE Trans Cybern 6:7777

    Google Scholar 

  233. Gowda SN, Rohrbach M, Sevilla-Lara L (2020) SMART frame selection for action recognition. arXiv e-prints, p. arXiv:2012.10671

  234. Wharton Z, Behera A, Liu Y, Bessis N (2021) Coarse temporal attention network (cta-net) for driver's activity recognition. In: Proceedings of the IEEE/CVF winter conference on applications of computer vision, pp 1279–1289

  235. Ullah A, Muhammad K, Ding W, Palade V, Haq IU, Baik SW (2021) Efficient activity recognition using lightweight CNN and DS-GRU network for surveillance applications. Appl Soft Comput 103:107102

    Article  Google Scholar 

  236. Khan MA et al (2021) A fused heterogeneous deep neural network and robust feature selection framework for human actions recognition. Arabian J Sci Eng 6:1–16

    Google Scholar 

  237. Ullah A, Muhammad K, Hussain T, Baik SW (2021) Conflux LSTMs network: a novel approach for multi-view action recognition. Neurocomputing 435:321–329

    Article  Google Scholar 

  238. Reinolds F, Neto C, Machado J (2022) Deep learning for activity recognition using audio and video. Electronics 11(5):782

    Article  Google Scholar 

  239. Siddiqi MH, Alsirhani A (2022) An efficient feature selection method for video-based activity recognition systems. Math Problems Eng 2022:66689

    Article  Google Scholar 

  240. Khare M, Jeon M (2022) Multi-resolution approach to human activity recognition in video sequence based on combination of complex wavelet transform, Local Binary Pattern and Zernike moment. Multimedia Tools Appl 2:1–30

    Google Scholar 

  241. Deotale D et al (2022) HARTIV: human activity recognition using temporal information in videos. CMC-Comput Mater Continua 70(2):3919–3938

    Article  Google Scholar 

  242. Zhang C, Wu J, Li Y (2022) ActionFormer: localizing moments of actions with transformers. arXiv preprint arXiv:2202.07925

  243. Ahmed N, Asif HMS, Khalid H (2021) PIQI: perceptual image quality index based on ensemble of Gaussian process regression. Multimedia Tools Appl 80(10):15677–15700

    Article  Google Scholar 

  244. Ahmed SAN (2022) BIQ2021: a large-scale blind image quality assessment database. arXiv preprint arXiv:submit/4155160

  245. Ahmed N, Asif HS, Bhatti AR, Khan A (2022) Deep ensembling for perceptual image quality assessment. Soft Comput 2:1–22

    Google Scholar 

  246. Ahmed N, Asif HMS (2020) Perceptual quality assessment of digital images using deep features. Comput Inform 39(3):385–409

    Article  MATH  Google Scholar 

  247. Alzantot M, Chakraborty S, Srivastava M (2017) Sensegen: a deep learning architecture for synthetic sensor data generation. In: 2017 IEEE international conference on pervasive computing and communications workshops (PerCom Workshops), IEEE, pp 188–193

Download references

Acknowledgements

We acknowledge partial support from the National Center of Big Data and Cloud Computing (NCBC) and Higher Education Commission (HEC) of Pakistan for conducting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Usama Ijaz Bajwa.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleem, G., Bajwa, U.I. & Raza, R.H. Toward human activity recognition: a survey. Neural Comput & Applic 35, 4145–4182 (2023). https://doi.org/10.1007/s00521-022-07937-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07937-4

Keywords

Navigation