Skip to main content
Log in

Boundary intermittent stabilization for delay reaction–diffusion cellular neural networks

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Exponential stability is considered for delay reaction–diffusion cellular neural networks (DRDCNNs) under two cases where the state information is fully available and not fully available. When the state information of controlled system is fully available, an aperiodically intermittent boundary controller is designed to stabilize the controlled system. When the state information is not fully available, we propose an observer based on the boundary output to estimate the system state, and an observer-based aperiodically intermittent boundary controller is designed. Employing the Lyapunov functional method and Poincaré’s inequality, we obtain a criterion to ensure DRDCNNs achieve the exponential stabilization. Based on our obtained results, the influence of diffusion coefficient matrix, control gains, time-delays and control proportion on the stability are studied. To illustrate the effectiveness of our theoretical results, at last, numerical examples are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availibility

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Hinton G, Deng L, Yu D, Dahl G, Mohamed A, Jaitly N, Senior A, Vanhoucke V, Nguyen P, Sainath T, Kingsbury B (2012) Deep neural networks for acoustic modeling in speech recognition. IEEE Singal Process Mag 29(6):82–97

    Article  Google Scholar 

  2. Li X, Yeh A (2002) Neural-network-based cellular automata for simulating multiple land use changes using GIS. Int J Geogr Inf Sci 16(4):323–343

    Article  Google Scholar 

  3. Qian L, Winfree E, Bruck J (2011) Neural network computation with DNA strand displacement cascades. Nature 475(7356):368–372

    Article  Google Scholar 

  4. Tatem A, Lewis H, Atkinson P, Nixon M (2001) Super-resolution target identification from remotely sensed images using a Hopfield neural network. IEEE Trans Geosci Remote Sens 39(4):781–796

    Article  Google Scholar 

  5. Cao J, Zhou D (1998) Stability analysis of delayed cellular neural networks. Neural Netw 11(9):1601–1605

    Article  Google Scholar 

  6. Han Q, Liao X, Li C (2013) Analysis of associative memories based on stability of cellular neural networks with time delay. Neural Comput Appl 23(1):237–244

    Article  Google Scholar 

  7. Wu J, Lian K (2006) Cellular neural field and its convergence analysis. IEEE Trans Neural Netw 17(6):1639–1641

    Article  MathSciNet  Google Scholar 

  8. Huang Z (2017) Almost periodic solutions for fuzzy cellular neural networks with time-varying delays. Neural Comput Appl 28(8):2313–2320

    Article  Google Scholar 

  9. Rajivganthi C, Rihan F, Lakshmanan S, Muthukumar P (2018) Finite-time stability analysis for fractional-order Cohen-Grossberg BAM neural networks with time delays. Neural Comput Appl 29(12):1309–1320

    Article  Google Scholar 

  10. Yuan Z, Huang L, Hu D, Liu B (2008) Convergence of nonautonomous Cohen-Grossberg-type neural networks with variable delays. IEEE Trans Neural Netw 19(1):140–147

    Article  Google Scholar 

  11. Chen T (2001) Global exponential stability of delayed Hopfield neural networks. Neural Netw 14(8):977–980

    Article  Google Scholar 

  12. Liu W, Fu C, Hu H (2011) Global exponential stability of a class of Hopfield neural networks with delays. Neural Comput Appl 20(8):1205–1209

    Article  Google Scholar 

  13. Hu X, Feng G, Duan S, Liu L (2017) A memristive multilayer cellular neural network with applications to image processing. IEEE Trans Neural Netw Learn Syst 28(8):1889–1901

    Article  MathSciNet  Google Scholar 

  14. Roska T, Wu C, Balsi M, Chua L (1992) Stability and dynamics of delay-type general and cellular neural networks. IEEE Trans Circults Syst I-Regul Pap 39(6):487–490

    Article  MATH  Google Scholar 

  15. Nikan O, Tenreiro Machado J, Golbabai A (2021) Numerical solution of time-fractional fourth-order reaction–diffusion model arising in composite environments. Appl Math Model 89:819–836

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang J, Qiu S, Chen W, Wu H, Huang T (2020) Recent advances on dynamical behaviors of coupled neural networks with and without reaction–diffusion terms. IEEE Trans Neural Netw Learn Syst 31(12):5231–5244

    Article  MathSciNet  Google Scholar 

  17. Liu C, Li C, Huang T, Li C (2013) Stability of Hopfield neural networks with time delays and variable-time impulses. Neural Comput Appl 22(1):195–202

    Article  Google Scholar 

  18. Wu Z, Shi P, Su H, Chu J (2013) Stochastic synchronization of Markovian jump neural networks with time-varying delay using sampled data. IEEE Trans Cybern 43(6):1796–1806

    Article  Google Scholar 

  19. Wen S, Bao G, Zeng Z, Chen Y, Huang T (2013) Global exponential synchronization of memristor-based recurrent neural networks with time-varying delays. Neural Netw 48:195–203

    Article  MATH  Google Scholar 

  20. Arik S (2002) An analysis of global asymptotic stability of delayed cellular neural networks. IEEE Trans Neural Netw 13(5):1239–1242

    Article  Google Scholar 

  21. Liao X, Wang J (2003) Algebraic criteria for global exponential stability of cellular neural networks with multiple time delays. IEEE Trans Circuits Syst I-Fundam Theory Appl 50(2):268–275

    Article  MathSciNet  MATH  Google Scholar 

  22. Mohamad S, Gopalsamy K (2003) Exponential stability of continuous-time and discrete-time cellular neural networks with delays. Appl Math Comput 135(1):17–38

    MathSciNet  MATH  Google Scholar 

  23. Zhang H, Wang Z (2007) Global asymptotic stability of delayed cellular neural networks. IEEE Trans Neural Netw 18(3):947–950

    Article  MathSciNet  Google Scholar 

  24. Yu Y (2017) Finite-time stability on a class of SICNNs with neutral proportional delays. Neural Comput Appl 28:S97–S105

    Article  Google Scholar 

  25. Lou X, Cui B (2007) Boundedness and exponential stability for nonautonomous cellular neural networks with reaction–diffusion terms. Chaos Solitons Fractals 33(2):653–662

    Article  MathSciNet  MATH  Google Scholar 

  26. Rao R, Zhong S(2017) Stability analysis of impulsive stochastic reaction-diffusion cellular neural network with distributed delay via fixed point theory. Complexity

  27. Wang L, Zhang R, Wang Y (2009) Global exponential stability of reaction–diffusion cellular neural networks with S-type distributed time delays. Nonlinear Anal-Real World Appl 10(2):1101–1113

    Article  MathSciNet  MATH  Google Scholar 

  28. Yang G, Kao Y, Li W, Sun X (2013) Exponential stability of impulsive stochastic fuzzy cellular neural networks with mixed delays and reaction–diffusion terms. Neural Comput Appl 23(3–4):1109–1121

    Article  Google Scholar 

  29. Song Q, Wang Z (2009) Dynamical behaviors of fuzzy reaction–diffusion periodic cellular neural networks with variable coefficients and delays. Appl Math Model 33(9):3533–3545

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu Z, Wen G, Yu X, Guan Z, Huang T (2020) Delayed impulsive control for consensus of multi-agent systems with switching commucation graphs. IEEE Trans Cybern 50(7):3045–3055

    Article  Google Scholar 

  31. Liu Z, Yu X, Guan Z, Hu B, Li C (2017) Pulse-Modulated intermittent control in consensus of multi-agent systems. IEEE Trans Syst Man Cybern Syst 47(5):783–793

    Article  Google Scholar 

  32. Liu X, Li Z, Wu K (2021) Boundary Mittag-Leffler stabilization of fractional reaction–diffusion cellular neural networks. Neural Netw 132:269–280

    Article  MATH  Google Scholar 

  33. Kobayashi T (2001) Adaptive stabilization of a class of reaction–diffusion systems. Dyn Control 11(1):47–56

    Article  MathSciNet  MATH  Google Scholar 

  34. Wu K, Sun H, Yang B, Lim C (2018) Finite-time boundary control for delay reaction–diffusion systems. Appl Math Comput 329:52–63

    MathSciNet  MATH  Google Scholar 

  35. Wang J, Liu Y, Sun C (2019) Adaptive neural boundary control design for nonlinear flexible distributed parameter systems. IEEE Trans Control Syst Technol 27(5):2085–2099

    Article  Google Scholar 

  36. Wu K, Tian T, Wang L, Wang W (2016) Asymptotical synchronization for a class of coupled time-delay partial differential systems via boundary control. Neurocomputing 197:113–118

    Article  Google Scholar 

  37. Yang C, Huang T, Li Z, Zhang A, Qiu J, Alsaadi F (2016) Boundary control for exponential stabilization of nonlinear distributed parameter systems modeled by PIDEs. IEEE Access 6:47889–47896

    Article  Google Scholar 

  38. Wu K, Wang J, Lim C (2018) Synchronization of stochastic reaction–diffusion systems via boundary control. Nonlinear Dyn 94(3):1763–1773

    Article  MATH  Google Scholar 

  39. Cheng Y, Wu Y, Guo BZ (2021) Absolute boundary stabilization for an axially moving Kirchhoff beam. Automatica 129:109667

    Article  MathSciNet  MATH  Google Scholar 

  40. Li C, Liao X, Huang T (2007) Exponential stabilization of chaotic systems with delay by periodically intermittent control. Chaos 17(1):013103

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang G, Shen Y (2015) Exponential stabilization of memristor-based chaotic neural networks with time-varying delays via intermittent control. IEEE Trans Neural Netw Learn Syst 26(7):1431–1441

    Article  MathSciNet  Google Scholar 

  42. Zhang W, Li C, Huang T, Xiao M (2015) Synchronization of neural networks with stochastic perturbation via aperiodically intermittent control. Neural Netw 71:105–111

    Article  MATH  Google Scholar 

  43. Zhang G, Shen Y (2014) Exponential synchronization of delayed memristor-based chaotic neural networks via periodically intermittent control. Neural Netw 55:1–10

    Article  MATH  Google Scholar 

  44. Dong Y, Guo L, Hao J (2020) Robust exponential stabilization for uncertain neutral neural networks with interval time-varying delays by periodically intermittent control. Neural Comput Appl 32(7):2651–2664

    Article  Google Scholar 

  45. Tucsnak M, Weiss G (2009) Observation and control for operator semigroups. Birkhauser Verlag AG

  46. Wu K, Sun H, Yang B, Lim C (2018) Finite-time boundary control for delay reaction–diffusion systems. Appl Math Comput 329:52–63

    MathSciNet  MATH  Google Scholar 

  47. Boyd S, Laurent E, Ghaoui L, Feron E, Balakrishnan V (1994) Linear matrix inequalities in system and control theory. Soc Ind Appl Math

  48. Li H, Zhang W, Li C, Zhang W (2019) Global asymptotical stability for a class of non-autonomous impulsive inertial neural networks with unbounded time-varying delay. Neural Comput Appl 31:6757–6766

    Article  Google Scholar 

Download references

Funding

The funding was provided by Natural Science Foundation of Shandong Province (Grant No. ZR2021MF007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-Ning Wu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XY., Fan, QL., Liu, XZ. et al. Boundary intermittent stabilization for delay reaction–diffusion cellular neural networks. Neural Comput & Applic 34, 18561–18577 (2022). https://doi.org/10.1007/s00521-022-07457-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07457-1

Keywords

Navigation