Skip to main content

Advertisement

Log in

A multi-layer perceptron neural network model for predicting the hydrate equilibrium conditions in multi-component hydrocarbon systems

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This work presents a model based on multilayer perceptron neural network (MLPNN) for the prediction of hydrate equilibrium conditions in hydrocarbon systems. The model heuristics are based on an extensive experimental dataset found in the open literature (consisting of 2883 data points for pure component, 993 data points binary component and 484 data points for multicomponent systems, for a wide range of temperature, compositions, and considering different equilibrium phases and presence of inhibitors). Absolute average relative deviation (AARD), mean squared error (MSE) and the regression coefficient (R2) are used as the evaluation criteria to test the efficacy and accuracy of the model’s performance. Results were validated with data points not used to develop the proposed model and found to be in close agreement. The model’s performance was also compared to well-known rigorous equilibrium models (Ng–Robinson and Colorado School of Mines models) and found superior in terms of accuracy with a AARD value as low as 0.60 MPa for the same experimental dataset. The results and comparison indicate that the proposed MLPNN model can be confidently used to predict hydrate equilibrium conditions for various hydrocarbon systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Gbaruko BC, Igwe JC, Gbaruko PN, Nwokeoma RC (2007) Gas hydrates and clathrates: flow assurance, environmental and economic perspectives and the Nigerian liquified natural gas project. J Petrol Sci Eng 56:192–198

    Article  Google Scholar 

  2. Mooijer-Van den Heuvel MM (2004) Phase behaviour and structural aspects of ternary clathrate hydrate systems. The Role of Additives.Appl Sci, TU Delft

  3. Xiao C, Adidharma H (2009) Dual function inhibitors for methane hydrate. Chem Eng Sci 64:1522–1527

    Article  Google Scholar 

  4. Koh CA, Sloan ED, Sum AK, Wu DT (2011) Fundamentals and applications of gas hydrates. Ann Rev Chem Biomolecular Eng 2:237–257

    Article  Google Scholar 

  5. Sloan ED, Koh CA (2007) Clathrate hydrates of natural gases, 3rd ed., CRC Press Taylor & Francis Group

  6. Sloan ED Jr (1991) Natural gas hydrates. J Petrol Technol 43:1414–1417

    Article  Google Scholar 

  7. Li D, Ren S, Zhang L, Liu Y (2016) Dynamic behavior of hydrate dissociation for gas production via depressurization and its influencing factors. J Petrol Sci Eng 146:552–560

    Article  Google Scholar 

  8. Vedachalam N, Ramesh S, Srinivasalu S, Rajendran G, Ramadass GA, Atmanand MA (2016) Assessment of methane gas production from Indian gas hydrate petroleum systems. Appl Energy 168:649–660

    Article  Google Scholar 

  9. Cranganu C (2009) In-situ thermal stimulation of gas hydrates. J Petrol Sci Eng 65:76–80

    Article  Google Scholar 

  10. Mohammad-Taheri M, Zarringhalam Moghaddam A, Nazari K, Gholipour Zanjani N (2013) The role of thermal path on the accuracy of gas hydrate phase equilibrium data using isochoric method. Fluid Phase Equilib 338:257–264

    Article  Google Scholar 

  11. Khan MS, Lal B, Keong LK, Ahmed I (2019) Tetramethyl ammonium chloride as dual functional inhibitor for methane and carbon dioxide hydrates. Fuel 236:251–263

    Article  Google Scholar 

  12. Nasir Q, Suleman H, Elsheikh YA (2020) A review on the role and impact of various additives as promoters/ inhibitors for gas hydrate formation. J Natural Gas Sci Eng 76:103211

    Article  Google Scholar 

  13. Lal B (2014) Hydration behavior study of imidazolium based ILs in water. Appl Mech Mater 625:553–556

    Article  Google Scholar 

  14. Gonfa G, Bustam MA, Sharif AM, Mohamad N, Ullah S (2015) Tuning ionic liquids for natural gas dehydration using COSMO-RS methodology. Jf Natural Gas Sci Eng 27:1141–1148

    Article  Google Scholar 

  15. Kermani MB, Morshed A (2003) Carbon dioxide corrosion in oil and gas production—a compendium. Corrosion 59:659–683

    Article  Google Scholar 

  16. Mokhatab S, Poe WA, Mak JY (2015) Chapter 7 - Natural Gas Dehydration. In: Mokhatab S, Poe WA, Mak JY (eds) Handbook of natural gas transmission and processing (Third Edition). Gulf Professional Publishing, Boston, pp 223–263

    Chapter  Google Scholar 

  17. Acosta HY, Bishnoi PR, Clarke MA (2011) Experimental measurements of the thermodynamic equilibrium conditions of tetra-n-butylammonium bromide semiclathrates formed from synthetic landfill gases. J Chem Eng Data 56:69–73

    Article  Google Scholar 

  18. Akhfash M, Arjmandi M, Aman ZM, Boxall JA, May EF (2017) Gas Hydrate thermodynamic inhibition with MDEA for reduced MEG circulation. J Chem Eng Data 62:2578–2583

    Article  Google Scholar 

  19. Cha J-H, Ha C, Kang S-P, Kang JW, Kim K-S (2016) Thermodynamic inhibition of CO2 hydrate in the presence of morpholinium and piperidinium ionic liquids. Fluid Phase Equilib 413:75–79

    Article  Google Scholar 

  20. Han M-J, Nam S-T (2002) Thermodynamic and rheological variation in polysulfone solution by PVP and its effect in the preparation of phase inversion membrane. J Membr Sci 202:55–61

    Article  Google Scholar 

  21. Mohammadi A, Manteghian M, Mohammadi AH, Kamran-Pirzaman A (2014) Thermodynamic modeling of the dissociation conditions of hydrogen sulfide clathrate hydrate in the presence of aqueous solution of inhibitor (alcohol, salt or ethylene glycol). Chem Eng Res Des 92:2283–2293

    Article  Google Scholar 

  22. Qasim A, Khan MS, Lal B, Shariff AM (2019) Phase equilibrium measurement and modeling approach to quaternary ammonium salts with and without monoethylene glycol for carbon dioxide hydrates. J Mol Liq 282:106–114

    Article  Google Scholar 

  23. Wang F, Zhang JN, Li CX (2014) Study on hydrate inhibitor to prevent freeze-plugging of gas-condensate well. Adv Mater Res 868:737–741

    Article  Google Scholar 

  24. Lederhos JP, Long JP, Sum A, Christiansen RL, Sloan ED (1996) Effective kinetic inhibitors for natural gas hydrates. Chem Eng Sci 51:1221–1229

    Article  Google Scholar 

  25. Lachet V, Béhar EJO, Science G, IFP T-R (2000) Industrial perspective on natural gas hydrates, 55: 611-616

  26. Jassim EI, Abdi MA, Muzychka Y (2008) A CFD-based model to locate flow-restriction induced hydrate deposition in pipelines, In: Offshore Technology Conference

  27. John VT, Papadopoulos KD, Holder GD (1985) A generalized model for predicting equilibrium conditions for gas hydrates. AIChE J 31:252–259

    Article  Google Scholar 

  28. Gudmundsson JS, Borrehaug A (1996) Frozen hydrate for transportation of natural gas, in: proceedings of second International Conference in Natural Gas Hydrate, Toulouse, France, pp. 415–422

  29. Del Villano L, Kommedal R, Kelland MA (2008) Class of kinetic hydrate inhibitors with good biodegradability. Energy Fuels 22:3143–3149

    Article  Google Scholar 

  30. Farhang F, Nguyen AV, Hampton MA (2014) Influence of sodium halides on the kinetics of CO2 hydrate formation. Energy Fuels 28:1220–1229

    Article  Google Scholar 

  31. Ke W, Kelland MA (2016) Kinetic hydrate inhibitor studies for gas hydrate systems: a review of experimental equipment and test methods. Energy Fuels 30:10015–10028

    Article  Google Scholar 

  32. Makogon YF, Makogon TY, Holditch SA (2000) Kinetics and mechanisms of gas hydrate formation and dissociation with inhibitors. Ann New York Acad Sci 912:777–796

    Article  Google Scholar 

  33. Meindinyo R-ET (2017) Gas hydrate growth kinetics ; experimental study related to effects of heat transfer, In: Petroleum engineering, University of Stavanger, Norway

  34. Naeiji P, Arjomandi A, Varaminian F (2014) Amino acids as kinetic inhibitors for tetrahydrofuran hydrate formation: experimental study and kinetic modeling. J Natural Gas Sci Eng 21:64–70

    Article  Google Scholar 

  35. Schmelzer JWP, Baidakov VG (2001) Kinetics of condensation and boiling: comparison of different approaches. J Phys Chem B 105:11595–11604

    Article  Google Scholar 

  36. Braniff MJ (2013) Effect of dually combined under-inhibition and anti-agglomerant treatment on hydrate slurries, In: Department of Chemical and Biological Engineering, Colorado School of Mines, Colorado

  37. York JD, Firoozabadi A (2008) Comparing effectiveness of Rhamnolipid biosurfactant with a quaternary ammonium salt surfactant for hydrate anti-agglomeration. J Phys Chem B 112:845–851

    Article  Google Scholar 

  38. Lee W, Shin J-Y, Cha J-H, Kim K-S, Kang S-P (2016) Inhibition effect of ionic liquids and their mixtures with poly(N-vinylcaprolactam) on methane hydrate formation. J Ind Eng Chem 38:211–216

    Article  Google Scholar 

  39. Muromachi S, Hashimoto H, Maekawa T, Takeya S, Yamamoto Y (2016) Phase equilibrium and characterization of ionic clathrate hydrates formed with tetra-n-butylammonium bromide and nitrogen gas. Fluid Phase Equilib 413:249–253

    Article  Google Scholar 

  40. Tariq M, Connor E, Thompson J, Khraisheh M, Atilhan M, Rooney D (2016) Doubly dual nature of ammonium-based ionic liquids for methane hydrates probed by rocking-rig assembly. RSC Adv 6:23827–23836

    Article  Google Scholar 

  41. Bavoh CB, Khan MS, Lal B, N.I. Bt Abdul Ghaniri, K.M. Sabil, (2018) New methane hydrate phase boundary data in the presence of aqueous amino acids. Fluid Phase Equilib 478:129–133

    Article  Google Scholar 

  42. Sa J-H, Lee BR, Park D-H, Han K, Chun HD, Lee K-H (2011) Amino acids as natural inhibitors for hydrate formation in CO2 sequestration. Environ Sci Technol 45:5885–5891

    Article  Google Scholar 

  43. Kumar A, Sakpal T, Kumar R (2015) Influence of low-dosage hydrate inhibitors on methane clathrate hydrate formation and dissociation kinetics. Energy Technol 3:717–725

    Article  Google Scholar 

  44. Xu Y, Yang M, Yang X (2010) Chitosan as green kinetic inhibitors for gas hydrate formation. J Nat Gas Chem 19:431–435

    Article  Google Scholar 

  45. Qasim A, Khan MS, Lal B, Shariff AM (2019) A perspective on dual purpose gas hydrate and corrosion inhibitors for flow assurance. J Petrol Sci Eng 183:106418

    Article  Google Scholar 

  46. Fattah KAA (2004) Evaluation of empirical correlations for natural gas hydrate predictions, Oil and Gas Business.

  47. Carson DB, Katz DL (1942) Natural gas hydrates. Trans AIME 146:150–158

    Article  Google Scholar 

  48. Wilcox WI, Carson DB, Katz DL (1941) Natural gas hydrates. Ind Eng Chem 33:662–665

    Article  Google Scholar 

  49. Mann SL, McClure LM, Poettmann FH, Sloan ED (1989) Vapor-solid equilibrium ratios for structure I and II natural gas hydrates. In: Convention A (ed) 68 (San Antonio 1989–03-13). Tulsa, Gas processors association, pp 60–74

    Google Scholar 

  50. Poettmann FH, Sloan ED, Mann SL, McClure LM (1989) Vapor-solid equilibrium ratios forstructure I and structure II natural gas hydrates., In: 68th Annual GPA Convention, , San Antonio, TX, USA

  51. Katz DL (1945) Prediction of conditions for hydrate formation in natural gases. Trans AIME 160:140–149

    Article  Google Scholar 

  52. Elgibaly AA, Elkamel AM (1998) A new correlation for predicting hydrate formation conditions for various gas mixtures and inhibitors. Fluid Phase Equilib 152:23–42

    Article  Google Scholar 

  53. Hammerschmidt EG (1934) Formation of gas hydrates in natural gas transmission lines. Ind Eng Chem 26:851–855

    Article  Google Scholar 

  54. Berge BK (1986) Hydrate Predictions on a microcomputer, in: petroleum industry application of microcomputers,

  55. Kobayashi KS, Sloan ED (1987) Phase behavior of water/hydrocarbon systems, in: Petroleum Engineering Handbook

  56. Bahadori A (2008) Correlation accurately predicts hydrate forming pressure of pure components. J Canadian Petrol Technol,Vol. 47.

  57. Bahadori A, Vuthaluru HB, Tade MO, Mokhatab S (2009) Novel correlations for determining appropriate mono-ethylene glycol injection rate to avoid gas hydrate formation, In: Canadian International Petroleum Conference,

  58. Bahadori A, Vuthaluru HB (2009) A novel correlation for estimation of hydrate forming condition of natural gases. J Nat Gas Chem 18:453–457

    Article  Google Scholar 

  59. Ghiasi MM (2012) Initial estimation of hydrate formation temperature of sweet natural gases based on new empirical correlation. J Nat Gas Chem 21:508–512

    Article  Google Scholar 

  60. Baillie CW (1987) E Chart gives hydrate formation temperature for natural gas. Oil Gas J 85:14

    Google Scholar 

  61. van der Waals JCPJH (2007) Clathrate solutions, Adv. Chem. Phys, pp. 1–57.

  62. Parrish WR, Prausnitz JM (1972) Dissociation pressures of gas hydrates formed by gas mixtures. Ind Eng Chem Process Des Dev 11:26–35

    Article  Google Scholar 

  63. Sabo D, Rempe SB, Greathouse JA, Martin MG (2006) Molecular studies of the structural properties of hydrogen gas in bulk water. Mol Simul 32:269–278

    Article  Google Scholar 

  64. Ng H-J, Robinson DB (1976) The measurement and prediction of hydrate formation in liquid hydrocarbon-water systems. Ind Eng Chem Fundam 15:293–298

    Article  Google Scholar 

  65. Holder GD, Corbin G, Papadopoulos KD (1980) Thermodynamic and molecular properties of gas hydrates from mixtures containing methane, argon, and krypton. Ind Eng Chem Fundam 19:282–286

    Article  Google Scholar 

  66. Zuo Y-X, Stenby EH (1997) Prediction of gas hydrate formation conditions in aqueous solutions of single and mixed electrolytes. SPE J 2:406–416

    Article  Google Scholar 

  67. Javanmardi J, Moshfeghian M, Maddox RN (1998) Simple method for predicting gas-hydrate-forming conditions in aqueous mixed-electrolyte solutions. Energy Fuels 12:219–222

    Article  Google Scholar 

  68. Javanmardi J, Moshfeghian M, Maddox RN (2001) An accurate model for prediction of gas hydrate formation conditions in mixtures of aqueous electrolyte solutions and alcohol. J Chem Eng 79:367–373

    Google Scholar 

  69. Shabani MM, Rashtchian D, Ghotbi C, Taghikhani V, Khayat G (2007) Prediction of hydrate formation for the systems containing single and mixed electrolyte solutions %J Iranian. J Chem Chem Eng (IJCCE) 26:35–45

    Google Scholar 

  70. Soave G (1972) Equilibrium constants from a modified Redlich-Kwong equation of state. Chem Eng Sci 27:1197–1203

    Article  Google Scholar 

  71. Dahl S, Michelsen ML (1990) High-pressure vapor-liquid equilibrium with a UNIFAC-based equation of state. AIChE J 36:1829–1836

    Article  Google Scholar 

  72. Eslamimanesh A, Mohammadi AH, Richon D (2011) Thermodynamic model for predicting phase equilibria of simple clathrate hydrates of refrigerants. Chem Eng Sci 66:5439–5445

    Article  Google Scholar 

  73. Klauda JB, Sandler SI (2003) Phase behavior of clathrate hydrates: a model for single and multiple gas component hydrates. Chem Eng Sci 58:27–41

    Article  Google Scholar 

  74. Tavasoli H, Feyzi F, Dehghani MR, Alavi F (2011) Prediction of gas hydrate formation condition in the presence of thermodynamic inhibitors with the Elliott–Suresh–Donohue Equation of State. J Petrol Sci Eng 77:93–103

    Article  Google Scholar 

  75. Jäger A, Vinš V, Gernert J, Span R, Hrubý J (2013) Phase equilibria with hydrate formation in H2O+CO2 mixtures modeled with reference equations of state. Fluid Phase Equilib 338:100–113

    Article  Google Scholar 

  76. Valavi M, Dehghani MR (2012) Application of PHSC equation of state in prediction of gas hydrate formation condition. Fluid Phase Equilib 333:27–37

    Article  Google Scholar 

  77. Moradi G, Khosravani E (2012) Application of PRSV2 equation of state to predict hydrate formation temperature in the presence of inhibitors. Fluid Phase Equilib 333:18–26

    Article  Google Scholar 

  78. Moradi G, Khosravani E (2013) Modeling of hydrate formation conditions for CH4, C2H6, C3H8, N2, CO2 and their mixtures using the PRSV2 equation of state and obtaining the Kihara potential parameters for these components. Fluid Phase Equilib 338:179–187

    Article  Google Scholar 

  79. Clarke MA, Bishnoi PR (2004) Development of a new equation of state for mixed salt and mixed solvent systems, and application to vapour–liquid and solid (hydrate)–vapour–liquid equilibrium calculations. Fluid Phase Equilib 220:21–35

    Article  Google Scholar 

  80. Ali Akcayol M, Cinar C (2005) Artificial neural network based modeling of heated catalytic converter performance. Appl Therm Eng 25:2341–2350

    Article  Google Scholar 

  81. Machado Cavalcanti F, Emilia Kozonoe C, André Pacheco K, Maria de Brito Alves R (2021) Application of artificial neural networks to chemical and process engineering, In: Deep Learning Applications

  82. Witten IH, Frank E, Hall MA, Pal CJ (2017) Chapter 10 - Deep learning. In: Witten IH, Frank E, Hall MA, Pal CJ (eds) Data mining (Fourth Edition). Morgan Kaufmann, pp 417–466

    Google Scholar 

  83. Ghavipour M, Ghavipour M, Chitsazan M, Najibi SH, Ghidary SS (2013) Experimental study of natural gas hydrates and a novel use of neural network to predict hydrate formation conditions. Chem Eng Res Des 91:264–273

    Article  Google Scholar 

  84. Moradi MR, Nazari K, Alavi S, Mohaddesi M (2013) Prediction of equilibrium conditions for hydrate formation in binary gaseous systems using artificial. Neural Netw 1:171–176

    Google Scholar 

  85. Schmitz JE, Zemp RJ, Mendes MJ (2006) Artificial neural networks for the solution of the phase stability problem. Fluid Phase Equilib 245:83–87

    Article  Google Scholar 

  86. Kasabov NK (1996) Foundations of neural networks, fuzzy systems, and knowledge engineering, Marcel Alencar

  87. Haykin S (2010) Neural networks and learning machines, 3/E, Pearson Education India, 2010.

  88. Hagan MT, Demuth HB, Beale M (1997) Neural network design, PWS Publishing Co., 1997.

  89. Anonymous P (2022) in, MathWorks

  90. Mohanty S (2005) Estimation of vapour liquid equilibria of binary systems, carbon dioxide–ethyl caproate, ethyl caprylate and ethyl caprate using artificial neural networks. Fluid Phase Equilib 235:92–98

    Article  Google Scholar 

  91. Ng H-J, Robinson DB (1977) The prediction of hydrate formation in condensed systems. AIChE J 23:477–482

    Article  Google Scholar 

  92. Roberts OL, Brownscombe ER, Howe LS (1940) Constitution diagrams and composition of methane and ethane hydrates. Oil & Gas J 39:37–43

    Google Scholar 

  93. Deaton WM, Frost Jr EM (1946) Gas hydrates and their relation to the operation of natural-gas pipe lines., In, Bureau of Mines, Amarillo, TX (USA). Helium Research Center, United States

  94. Kobayashi R, Katz DL (1949) Methane hydrate at high pressure. J Petrol Technol 1:66–70

    Article  Google Scholar 

  95. McLeod HO Jr, Campbell JM (1961) Natural gas hydrates at pressures to 10,000 psia. J Petrol Technol 13:590–594

    Article  Google Scholar 

  96. Marshall DR, Saito S, Kobayashi R (1964) Hydrates at high pressures: Part I Methane-water, argon-water, and nitrogen-water systems. AIChE J 10:202–205

    Article  Google Scholar 

  97. Galloway TJ, Ruska W, Chappelear PS, Kobayashi R (1970) Experimental measurement of hydrate numbers for methane and ethane and comparison with theoretical values. Ind Eng Chem Fundam 9:237–243

    Article  Google Scholar 

  98. Chueh PLPL (1973) ARCTIC PIPELINE NATURAL GAS WATER CONTENT, In: 1973.

  99. Y.K. Verma, Hand, J. H. and Katz, D. L.[Donald L.], 1974) Gas hydrates from liquid hydrocarbons methane-propane-water system, in: GVC/AIChE Joint Meeting, pp. 10.

  100. Sloan ED, Khoury FM, Kobayashi R (1976) Water content of methane gas in equilibrium with hydrates. Ind Eng Chem Fundam 15:318–323

    Article  Google Scholar 

  101. Song KY, Kobayashi R (1989) Final hydrate stability conditions of a methane and propane mixture in the presence of pure water and aqueous solutions of methanol and ethylene glycol. Fluid Phase Equilib 47:295–308

    Article  Google Scholar 

  102. Deng YY, Xu X [Xiaozu], Zhang L [Lixin] (1993) A primary study on composition of methane hydrate, In: Permafrost Sixth International Conference, Beijing, China

  103. Dickens GR, Quinby-Hunt MS (1994) Methane hydrate stability in seawater. Geophys Res Lett 21:2115–2118

    Article  Google Scholar 

  104. Y.A.Y.A.a.A. Dyadin, E. Y., Decomposition of the methane Hydrate up to 10 kbar, in: International Conference on Natural Gas Hydrates, Toulouse France, 1996, pp. 67–70.

  105. Hütz U, Englezos P (1996) Measurement of structure H hydrate phase equilibrium and the effect of electrolytes. Fluid Phase Equilib 117:178–185

    Article  Google Scholar 

  106. Mei D-H, Liao J, Yang J-T, Guo T-M (1996) Experimental and modeling studies on the hydrate formation of a methane + nitrogen gas mixture in the presence of aqueous electrolyte solutions. Ind Eng Chem Res 35:4342–4347

    Article  Google Scholar 

  107. Komai TT, Yamamoto Y[Yoshitaka], Ikegami S [Sanshiro] (1997) Equilibrium properties and kinetics of methane and carbon dioxide gas hydrate formation/Dissociation, In: Fuel Chemistry Symposium on Gas Hydrates, American Chemical Society, San Francisco, CA, USA,, , pp. 568–572

  108. Nixdorf J, Oellrich LR (1997) Experimental determination of hydrate equilibrium conditions for pure gases, binary and ternary mixtures and natural gases. Fluid Phase Equilib 139:325–333

    Article  Google Scholar 

  109. Smelik EA, King HE (1997) Crystal-growth studies of natural gas clathrate hydrates using a pressurized optical cell. Am Miner 82:88–98

    Article  Google Scholar 

  110. Nakano S, Moritoki M, Ohgaki K (1999) High-pressure phase equilibrium and raman microprobe spectroscopic studies on the methane hydrate system. J Chem Eng Data 44:254–257

    Article  Google Scholar 

  111. Yang SO (2000) Measurements and predictions of phase equilibria for water + natural gas components in hydrate-forming conditions. Korea University, Seoul

    Google Scholar 

  112. Clarke M, Bishnoi PR (2001) Determination of the activation energy and intrinsic rate constant of methane gas hydrate decomposition. Can J Chem Eng 79:143–147

    Article  Google Scholar 

  113. Jager MD (2001) High pressure studies of hydrate phase inhibition using raman spectroscopy, in: chemical engineering, Colorado School of Mines, Golden,, Colorado, USA, 2001

  114. Jager MD, Sloan ED (2001) The effect of pressure on methane hydration in pure water and sodium chloride solutions. Fluid Phase Equilib 185:89–99

    Article  Google Scholar 

  115. Yang SO, Cho SH, Lee H, Lee CS (2001) Measurement and prediction of phase equilibria for water + methane in hydrate forming conditions. Fluid Phase Equilib 185:53–63

    Article  Google Scholar 

  116. Yang SO, Kim YS, Ryu S-K, [Seung-Kon], Lee CS [Chul Soo], LW-H (2002) Equilibrium measurements and unified predictions of hydrate-containing phase equilibria for methane, ethane, Propane and Their Mixtures, In: Fourth International Conference on Gas Hydrates, Yokohama, Japan, pp. 394–399

  117. Kim YS, Ryu SK, Yang SO, Lee CS (2003) Liquid water−hydrate equilibrium measurements and unified predictions of hydrate-containing phase equilibria for methane, ethane, propane, and their mixtures. Ind Eng Chem Res 42:2409–2414

    Article  Google Scholar 

  118. Nakamura T, Makino T, Sugahara T, Ohgaki K (2003) Stability boundaries of gas hydrates helped by methane—structure-H hydrates of methylcyclohexane and cis-1,2-dimethylcyclohexane. Chem Eng Sci 58:269–273

    Article  Google Scholar 

  119. Mohammadi AH, Anderson R, Tohidi B (2005) Carbon monoxide clathrate hydrates: Equilibrium data and thermodynamic modeling. AIChE J 51:2825–2833

    Article  Google Scholar 

  120. Ng H-JH-JaR, DB [Donald B.] (1983) Equilibrium phase composition and hydrating conditions in systems containing methanol, light hydrocarbons, carbon dioxide and hydrogen sulfide

  121. Ng H-J, Robinson DB (1985) Hydrate formation in systems containing methane, ethane, propane, carbon dioxide or hydrogen sulfide in the presence of methanol. Fluid Phase Equilib 21:145–155

    Article  Google Scholar 

  122. Robinson DB (1986) hydrate formation and inhibition in gas or gas condensate streams. J Can Petrol Technol, Vol. 25

  123. Kobayashi R (1951) Gas hydrate formation with brine and ethanol solutions

  124. Mohammadi AH, Richon D (2011) Gas hydrate phase equilibrium in methane + ethylene glycol, diethylene glycol, or triethylene glycol + water system. J Chem Eng Data 56:4544–4548

    Article  Google Scholar 

  125. Ross MJ, Toczylkin LS (1992) Hydrate dissociation pressures for methane or ethane in the presence of aqueous solutions of triethylene glycol. J Chem Eng Data 37:488–491

    Article  Google Scholar 

  126. Mahmoodaghdam E, Bishnoi PR (2002) Equilibrium data for methane, ethane, and propane incipient hydrate formation in aqueous solutions of ethylene glycol and diethylene glycol. J Chem Eng Data 47:278–281

    Article  Google Scholar 

  127. De Roo JL, Peters CJ, Lichtenthaler RN, Diepen GAM (1983) Occurrence of methane hydrate in saturated and unsaturated solutions of sodium chloride and water in dependence of temperature and pressure. AIChE J 29:651–657

    Article  Google Scholar 

  128. Kharrat M, Dalmazzone D (2003) Experimental determination of stability conditions of methane hydrate in aqueous calcium chloride solutions using high pressure differential scanning calorimetry. J Chem Thermodyn 35:1489–1505

    Article  Google Scholar 

  129. Aregbe AG, Sun B, Chen L (2019) Methane hydrate dissociation conditions in high-concentration NaCl/KCl/CaCl2 aqueous solution: experiment and correlation. J Chem Eng Data 64:2929–2939

    Article  Google Scholar 

  130. Mohammadi AH, Afzal W, Richon D (2008) Gas hydrates of methane, ethane, propane, and carbon dioxide in the presence of single NaCl, KCl, and CaCl2 aqueous solutions: experimental measurements and predictions of dissociation conditions. J Chem Thermodyn 40:1693–1697

    Article  Google Scholar 

  131. Dalmazzone D, Kharrat M, Lachet V, Fouconnier B, Clausse D (2002) DSC and PVT measurements. J Therm Anal Calorim 70:493–505

    Article  Google Scholar 

  132. Atik Z, Windmeier C, Oellrich LR (2006) Experimental gas hydrate dissociation pressures for pure methane in aqueous solutions of MgCl2 and CaCl2 and for a (Methane + Ethane) gas mixture in an aqueous solution of (NaCl + MgCl2). J Chem Eng Data 51:1862–1867

    Article  Google Scholar 

  133. Kang S-P, Chun M-K, Lee H (1998) Phase equilibria of methane and carbon dioxide hydrates in the aqueous MgCl2 solutions. Fluid Phase Equilib 147:229–238

    Article  Google Scholar 

  134. Dholabhai PD, Englezos P, Kalogerakis N, Bishnoi PR (1991) Equilibrium conditions for methane hydrate formation in aqueous mixed electrolyte solutions. Can J Chem Eng 69:800–805

    Article  Google Scholar 

  135. Jager MD, Peters CJ, Sloan ED (2002) Experimental determination of methane hydrate stability in methanol and electrolyte solutions. Fluid Phase Equilib 193:17–28

    Article  Google Scholar 

  136. Eichholz C, Majumdar A, Clarke MA, Oellrich LR, Bishnoi PR (2004) Experimental investigation and calculation of methane hydrate formation conditions in the presence of ethylene glycol and sodium chloride. J Chem Eng Data 49:847–851

    Article  Google Scholar 

  137. Masoudi R, Tohidi B, Anderson R, Burgass RW, Yang J (2004) Experimental measurement and thermodynamic modelling of clathrate hydrate equilibria and salt solubility in aqueous ethylene glycol and electrolyte solutions. Fluid Phase Equilib 219:157–163

    Article  Google Scholar 

  138. Masoudi R, Tohidi B, Danesh A, Todd AC, Anderson R, Burgass RW, Yang J (2005) Measurement and prediction of gas hydrate and hydrated salt equilibria in aqueous ethylene glycol and electrolyte solutions. Chem Eng Sci 60:4213–4224

    Article  Google Scholar 

  139. Reamer HH, Selleck FT, Sage BH (1952) Some properties of mixed paraffinic and Olefinic hydrates. J Petrol Technol 4:197–202

    Article  Google Scholar 

  140. Avlonitis DADA (1988) Multiphase equilibria in oil-water hydrate forming systems. Heriot-Watt University, Edinburgh

    Google Scholar 

  141. Englezos P, Bishnoi PR (1991) Experimental study on the equilibrium ethane hydrate formation conditions in aqueous electrolyte solutions. Ind Eng Chem Res 30:1655–1659

    Article  Google Scholar 

  142. Clarke M, Bishnoi PR (2000) Determination of the intrinsic rate of ethane gas hydrate decomposition. Chem Eng Sci 55:4869–4883

    Article  Google Scholar 

  143. Servio P, Englezos P, Bishnoi PR (2000) Kinetics of ethane hydrate growth on latex spheres measured by a light scattering technique. Ann New York Acad Sci 912:576–582

    Article  Google Scholar 

  144. Menezes DÉSd, Pessôa Filho PdA, Robustillo Fuentes MD (2020) Robustillo fuentes, phase equilibrium for methane, ethane and carbon dioxide hydrates at pressures up to 100 MPa through high-pressure microcalorimetry: experimental data, analysis and modeling. Fluid Phase Equilib 518:1125

    Article  Google Scholar 

  145. Long Z, Du J-W, Li D-L, Liang D-Q (2010) Phase equilibria of ethane hydrate in MgCl2 aqueous solutions. J Chem Eng Data 55:2938–2941

    Article  Google Scholar 

  146. Morita K, Nakano S, Ohgaki K (2000) Structure and stability of ethane hydrate crystal. Fluid Phase Equilib 169:167–175

    Article  Google Scholar 

  147. Maekawa T (2012) Equilibrium conditions of ethane hydrates in the presence of aqueous solutions of alcohols, glycols, and glycerol. J Chem Eng Data 57:526–531

    Article  Google Scholar 

  148. Falabella BJBJ (1975) A study of natural gas hydrates, In: University of Massachusetts

  149. Nakano S, Yamamoto K, Ohgaki K (1998) Natural gas exploitation by carbon dioxide from gas hydrate fields—high-pressure phase equilibrium for an ethane hydrate system Proceedings of the institution of mechanical engineers, part A: journal of power and energy, 212: 159–163

  150. Mohammadi AH, Afzal W, Richon D (2008) Experimental data and predictions of dissociation conditions for ethane and propane simple hydrates in the presence of methanol, ethylene glycol, and triethylene glycol aqueous solutions. J Chem Eng Data 53:683–686

    Article  Google Scholar 

  151. Tohidi B, Burgass RW, Danesh A, Todd AC (1993) Hydrate Inhibition Effect of Produced Water: Part 1—Ethane and Propane Simple Gas Hydrates, In: SPE Offshore Europe,.

  152. Tohidi B, Danesh A, Todd AC, Burgass RW (1997) Hydrate-free zone for synthetic and real reservoir fluids in the presence of saline water. Chem Eng Sci 52:3257–3263

    Article  Google Scholar 

  153. Robinson DB, Metha BR (1971) Hydrates in the propanecarbon dioxide- water system. J Can Petrol Technol, Vol 10

  154. Kubota HH, Shimizu K,[Kunihiko], Tanaka Y, Makita T [Tadashi] (1986) Thermodynamic properties of r13 (ccif3, r23 (chf3, r152a (c2h4f2, and propane hydrates for desalination of sea water, J. Chem. Eng. Jpn, 17: 423–429.

  155. Patil SL (1987) MEASUREMENT OF MULTIPHASE GAS HYDRATE PHASE EQUILIBRIA: EFFECT OF INHIBITORS AND HEAVIER HYDROCARBON COMPONENTS. University of Alaska, Fairbanks, Alaska

    Google Scholar 

  156. Englezos P, Ngan YT (1993) Incipient equilibrium data for propane hydrate formation in aqueous solutions of sodium chloride, potassium chloride and calcium chloride. J Chem Eng Data 38:250–253

    Article  Google Scholar 

  157. -v. den Heuvel MMM, Peters CJ, de Swaan Arons J (2002) Gas hydrate phase equilibria for propane in the presence of additive components. Fluid Phase Equilibria, 193: 245–259

  158. Maekawa T (2008) Equilibrium conditions of propane hydrates in aqueous solutions of alcohols, glycols, and glycerol. J Chem Eng Data 53:2838–2843

    Article  Google Scholar 

  159. Holder GD, Kamath VA (1982) Experimental determination of dissociation pressures for hydrates of the cis- and trans-isomers of 2-butene below the ice temperature. J Chem Thermodyn 14:1119–1128

    Article  Google Scholar 

  160. Song KY, Kobayashi R (1994) The water content of ethane, propane and their mixtures in equilibrium with liquid water or hydrates. Fluid Phase Equilib 95:281–298

    Article  Google Scholar 

  161. Ng H-JH-J, Chen CJ, Robinson DB [Donald B.] (1985) Effect of ethylene glycol or methanol on hydrate formation in systems containing ethane, propane, carbon dioxide, hydrogen sulfide or a typical gas condensate, In: DB Robinson & Associates Ltd. Research Report 92, Edmonton, Alberta, Canada

  162. Servio P, Englezos P (1997) Incipient equilibrium propane hydrate formation conditions in aqueous triethylene glycol solutions. J Chem Eng Data 42:800–801

    Article  Google Scholar 

  163. Bishnoi PR, Dholabhai PD (1993) Experimental study on propane hydrate equilibrium conditions in aqueous electrolyte solutions. Fluid Phase Equilib 83:455–462

    Article  Google Scholar 

  164. Von Stackelberg M (1949) Solid gas hydrates. Naturwissenschaften 36:359–362

    Google Scholar 

  165. Larson SD (1955) PHASE STUDIES OF THE TWO-COMPONENT CARBON DIOXIDE-WATER SYSTEM INVOLVING THE CARBON DIOXIDE HYDRATE, in. University of Illinois, Urbana, Illinois, USA

    Google Scholar 

  166. Wendland M, Hasse H, Maurer G (1999) Experimental pressure−temperature data on three- and four-phase equilibria of fluid, hydrate, and ice phases in the system carbon dioxide−water. J Chem Eng Data 44:901–906

    Article  Google Scholar 

  167. Hachikubo A, Miyamoto A, Hyakutake K, Abe K, Shoji H (2002) Phase equilibrium studies on gas hydrates formed from various guest molecules and powder ice

  168. Unruh CH, Katz DL (1949) Gas hydrates of carbon dioxide-methane mixtures. J Petrol Technol 1:83–86

    Article  Google Scholar 

  169. Takenouchi S, Kennedy GC (1965) Dissociation pressures of the phase <tex-math>$CO_{2}\cdot5\frac{3}{4}H_{2}O$</tex-math>. J Geol 73:383–390

    Article  Google Scholar 

  170. Miller SL, Smythe WD (1970) Carbon dioxide clathrate in the martian Ice Cap. Science 170:531–533

    Article  Google Scholar 

  171. S.U.D.o.C. Engineering, M. Science, J.G. Vlahakis, U.S.O.o.S. Water (1972) The growth rate of ice crystals: the properties of carbon dioxide hydrate, a Review of Properties of 51 Gas Hydrates, U.S. Department of the Interior

  172. Song KY, Kobayashi R (1987) Water content of CO2 in equilibrium with liquid water and/or hydrates. SPE Form Eval 2:500–508

    Article  Google Scholar 

  173. Adisasmito S, Frank RJ, Sloan ED (1991) Hydrates of carbon dioxide and methane mixtures. J Chem Eng Data 36:68–71

    Article  Google Scholar 

  174. Dholabhai PD, Kalogerakis N, Bishnoi PR (1993) Equilibrium conditions for carbon dioxide hydrate formation in aqueous electrolyte solutions. J Chem Eng Data 38:650–654

    Article  Google Scholar 

  175. Ohgaki K, Makihara Y, Takano K (1993) Formation of CO2 hydrate in pure and sea waters. J Chem Eng Jpn 26:558–564

    Article  Google Scholar 

  176. Yoon J-H, Lee H (1997) Clathrate phase equilibria for the water–phenol–carbon dioxide system. AIChE J 43:1884–1893

    Article  Google Scholar 

  177. Fan S-S, Guo T-M (1999) Hydrate formation of CO2-rich binary and quaternary gas mixtures in aqueous sodium chloride solutions. J Chem Eng Data 44:829–832

    Article  Google Scholar 

  178. Fan SS, Chen GJ, Ma QL, Guo TM (2000) Experimental and modeling studies on the hydrate formation of CO2 and CO2-rich gas mixtures. Chem Eng J 78:173–178

    Article  Google Scholar 

  179. Shen X-D, Long Z, Shi L-L, Liang D-Q (2015) Phase equilibria of CO2 hydrate in the aqueous solutions of N-Butyl-N-methylpyrrolidinium bromide. J Chem Eng Data 60:3392–3396

    Article  Google Scholar 

  180. Wang M, Sun Z-G, Li C-H, Zhang A-J, Li J, Li C-M, Huang H-F (2016) Equilibrium hydrate dissociation conditions of CO2 + HCFC141b or cyclopentane. J Chem Eng Data 61:3250–3253

    Article  Google Scholar 

  181. Nakano S, Moritoki M, Ohgaki K (1998) High-pressure phase equilibrium and raman microprobe spectroscopic studies on the CO2 hydrate system. J Chem Eng Data 43:807–810

    Article  Google Scholar 

  182. Dholabhai PD, Scott Parent J, Raj Bishnoi P (1997) Equilibrium conditions for hydrate formation from binary mixtures of methane and carbon dioxide in the presence of electrolytes, methanol and ethylene glycol. Fluid Phase Equilib 141:235–246

    Article  Google Scholar 

  183. Ng H-J, Robinson DB (1994) New developments in the measurement and prediction of hydrate formation for processing needs. Ann New York Acad Sci 715:450–462

    Article  Google Scholar 

  184. Breland E, Englezos P (1996) Equilibrium hydrate formation data for carbon dioxide in aqueous glycerol solutions. J Chem Eng Data 41:11–13

    Article  Google Scholar 

  185. Dastanian M, Izadpanah AA, Mofarahi M (2017) Phase equilibria of carbon dioxide hydrates in the presence of methanol/ethylene glycol and KCL aqueous solutions. J Chem Eng Data 62:1701–1707

    Article  Google Scholar 

  186. Dastanian M, Izadpanah AA, Mofarahi M (2018) Experimental measurement of dissociation condition for carbon dioxide hydrates in the presence of methanol/ethylene glycol and CaCl2 aqueous solutions. J Chem Eng Data 63:1675–1681

    Article  Google Scholar 

  187. Majumdar A, Mahmoodaghdam E, Bishnoi PR (2000) Equilibrium hydrate formation conditions for hydrogen sulfide, carbon dioxide, and ethane in aqueous solutions of ethylene glycol and sodium chloride. J Chem Eng Data 45:20–22

    Article  Google Scholar 

  188. van Cleeff A, Diepen GAM (1960) Gas hydrates of nitrogen and oxygen. Recueil Des Travaux Chimiques Des Pays‐Bas 79:582–586

    Article  Google Scholar 

  189. Sugahara K, Tanaka Y, Sugahara T, Ohgaki K (2002) Thermodynamic stability and structure of nitrogen hydrate crystal. J Supramol Chem 2:365–368

    Article  Google Scholar 

  190. Mohammadi AH, Tohidi B, Burgass RW (2003) Equilibrium data and thermodynamic modeling of nitrogen, oxygen, and air clathrate hydrates. J Chem Eng Data 48:612–616

    Article  Google Scholar 

  191. Holder GD, Grigoriou GC (1980) Hydrate dissociation pressures of (methane + ethane + water) existence of a locus of minimum pressures. J Chem Thermodyn 12:1093–1104

    Article  Google Scholar 

  192. Subramanian S, Kini RA, Dec SF, Sloan ED (2000) Evidence of structure II hydrate formation from methane+ethane mixtures. Chem Eng Sci 55:1981–1999

    Article  Google Scholar 

  193. Maekawa T (2001) Equilibrium conditions for gas hydrates of methane and ethane mixtures in pure water and sodium chloride solution. Geochem J 35:59–66

    Article  Google Scholar 

  194. Song KY, Kobayashi R (1982) Measurement and interpretation of the water content of a methane-propane mixture in the gaseous state in equilibrium with hydrate. Ind Eng Chem Fundam 21:391–395

    Article  Google Scholar 

  195. Thakore JL, Holder GD (1987) Solid vapor azeotropes in hydrate-forming systems. Ind Eng Chem Res 26:462–469

    Article  Google Scholar 

  196. Ng H-J, Robinson DB (1976) The role of n-butane in hydrate formation. AIChE J 22:656–661

    Article  Google Scholar 

  197. John VT, Holder GD (1982) Hydrates of methane + butane below the ice point. J Chem Eng Data 27:18–21

    Article  Google Scholar 

  198. Wu B-J, Robinson DB, Ng H-J (1976) Three- and four-phase hydrate forming conditions in methane + isobutane + water. J Chem Thermodyn 8:461–469

    Article  Google Scholar 

  199. Ohgaki K, Takano K, Sangawa H, Matsubara T, Nakano S (1996) Methane exploitation by carbon dioxide from gas hydrates&mdash;phase equilibria for CO<SUB>2</SUB>-CH<SUB>4</SUB> Mixed Hydrate System&mdash. J Chem Eng Jpn 29:478–483

    Article  Google Scholar 

  200. Servio P, Lagers F, Peters C, Englezos P (1999) Gas hydrate phase equilibrium in the system methane–carbon dioxide–neohexane and water. Fluid Phase Equilib 158–160:795–800

    Article  Google Scholar 

  201. Seo Y-T, Lee H (2001) Multiple-phase hydrate equilibria of the ternary carbon dioxide, methane, and water mixtures. J Phys Chem B 105:10084–10090

    Article  Google Scholar 

  202. Seo Y-T, Lee H, Yoon J-H (2001) Hydrate phase equilibria of the carbon dioxide, methane, and water system. J Chem Eng Data 46:381–384

    Article  Google Scholar 

  203. Sabil KM, Nasir Q, Partoon B, Seman AA (2014) Measurement of H-LW–V and dissociation enthalpy of carbon dioxide rich synthetic natural gas mixtures. J Chem Eng Data 59:3502–3509

    Article  Google Scholar 

  204. Khan MS, Lal B, Shariff AM, Mukhtar H (2019) Ammonium hydroxide ILs as dual-functional gas hydrate inhibitors for binary mixed gas (carbon dioxide and methane) hydrates. J Mol Liq 274:33–44

    Article  Google Scholar 

  205. Herri JM, Bouchemoua A, Kwaterski M, Fezoua A, Ouabbas Y, Cameirao A (2011) Gas hydrate equilibria for CO2–N2 and CO2–CH4 gas mixtures—Experimental studies and thermodynamic modelling. Fluid Phase Equilib 301:171–190

    Article  Google Scholar 

  206. Belandria V, Eslamimanesh A, Mohammadi AH, Théveneau P, Legendre H, Richon D (2011) Compositional analysis and hydrate dissociation conditions measurements for carbon dioxide + methane + water system. Ind Eng Chem Res 50:5783–5794

    Article  Google Scholar 

  207. Belandria V, Mohammadi AH, Richon D (2010) Phase equilibria of clathrate hydrates of methane+carbon dioxide: new experimental data and predictions. Fluid Phase Equilib 296:60–65

    Article  Google Scholar 

  208. Elliot DGaC, J J (1997) PROCESS FOR SEPARATING SELECTED COMPONENTS FROM MULTI-COMPONENT NATURAL GAS STREAMS, in: W.I.P. Organization (Ed.) United States of America Patent WO 97/09271, 1997

  209. Dholabhai PD, Bishnoi PR (1994) Hydrate equilibrium conditions in aqueous electrolyte solutions: mixtures of methane and carbon dioxide. J Chem Eng Data 39:191–194

    Article  Google Scholar 

  210. Robinson DB, Hutton JB (1967) Hydrate formation in systems containing methane, hydrogen sulphide and carbon dioxide. J Can Pet Technol 6:6–9

    Article  Google Scholar 

  211. Bishnoi PR, Dholabhai PD (1999) Equilibrium conditions for hydrate formation for a ternary mixture of methane, propane and carbon dioxide, and a natural gas mixture in the presence of electrolytes and methanol. Fluid Phase Equilib 158–160:821–827

    Article  Google Scholar 

  212. Aoyagi KS, K.Y, Kobayashi R, Sloan ED, Dharmawardhana PB (1980) (I). The water content and correlation of the water content of methane in equilibrium with hydrates, In: William Marsh Rice University Research Report RR-45, Houston, TX, 1980.

  213. P.K. Notz, N.E. Burke, P.C. Hawker, Measurement and Prediction of Hydrate Formation Conditions for Dry Gas, Gas Condensate, and Black Oil Reservoirs, in: Offshore Technology Conference, 1991.

  214. Blanc C, Tornier-Lasserve J (1990) Controlling hydrates in high-pressure flowlines, World Oil; (USA), 211 (1990).

  215. Ng H-JH-JaR, DB [Donald B.] (1989) HYDRATE FORMATION CONDITIONS IN THE PRESENCE OF HYDROGEN, In, Deposited Document Department of Chemical Engineering

  216. Tohidi B, Danesh A, Burgass RW, Todd AC (1995) Measurement and prediction of the amount of gas hydrates, In: BHR Group Conf. Ser. Publ. 1995, pp. 519–537.

  217. Erdogmus M, Cowie L, Chapman R, Fung G, Bollavaram P (2005) A novel approach to green, safe and economic subsea hydrotesting, In: Offshore Technology Conference

  218. Tohidi B, Burgass RW, Danesh A, Østergaard KK, Todd AC (2000) Improving the accuracy of gas hydrate dissociation point measurements. Ann New York Acad Sci 912:924–931

    Article  Google Scholar 

  219. Østergaard KK, Tohidi B, Anderson R, Todd AC, Danesh A (2002) Can 2-propanol form clathrate hydrates? Ind Eng Chem Res 41:2064–2068

    Article  Google Scholar 

  220. Tohidi B, Østergaard KK, Danesh A, Todd AC, Burgass RW (2001) Structure-H gas hydrates in petroleum reservoir fluids. Can J Chem Eng 79:384–391

    Article  Google Scholar 

  221. Ng H-J, Chen C-J, Saeterstad T (1987) Hydrate formation and inhibition in gas condensate and hydrocarbon liquid systems. Fluid Phase Equilib 36:99–106

    Article  Google Scholar 

  222. Jager MDaS, E D. [E. Dendy] (2002) Structural Transition of Clathrate Hydrates Formed from a Natural Gas, In: Fourth International Conference on Gas Hydrates, Yokohama, Japan, pp. 575–579.

  223. Holder GD, Stephenson JL, Joyce JJ, John VT, Kamath VA, Malekar S (1983) Formation of clathrate hydrates in hydrogen-rich gases. Ind Eng Chem Process Des Dev 22:170–171

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qazi Nasir.

Ethics declarations

Conflict of interest

The authors did not receive support from any organization for the submitted work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasir, Q., Suleman, H., Ud Din, I. et al. A multi-layer perceptron neural network model for predicting the hydrate equilibrium conditions in multi-component hydrocarbon systems. Neural Comput & Applic 34, 15863–15887 (2022). https://doi.org/10.1007/s00521-022-07284-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07284-4

Keywords

Navigation