Skip to main content
Log in

CWI: A multimodal deep learning approach for named entity recognition from social media using character, word and image features

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Named entity recognition (NER) from social media posts is a challenging task. User-generated content that forms the nature of social media is noisy and contains grammatical and linguistic errors. This noisy content makes tasks such as NER much harder. We propose two novel deep learning approaches utilizing multimodal deep learning and transformers. Both of our approaches use image features from short social media posts to provide better results on the NER task. On the first approach, we extract image features using InceptionV3 and use fusion to combine textual and image features. This approach presents more reliable name entity recognition when the images related to the entities are provided by the user. On the second approach, we use image features combined with text and feed it into a BERT-like transformer. The experimental results using precision, recall, and F1 score metrics show the superiority of our work compared to other state-of-the-art NER solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. https://developer.twitter.com/en/docs/counting-characters.

  2. Multimodal Named Entity Recognizer.

  3. A multimedia messaging application.

  4. 6 billion tokens with 200-dimensional word vectors, available at: http://nlp.stanford.edu/data/glove.6B.zip.

  5. 16 billion tokens with 300-dimensional word vectors, available at: https://dl.fbaipublicfiles.com/fastText/vectors-english/wiki-news-300d-1M.vec.zip.

  6. InceptionV3 pretrained model on ImageNet, available at: https://keras.io/applications/#inceptionv3.

  7. https://github.com/google-research/bert.

  8. BERT-Tiny: https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-2_H-128_A-2.zip.

  9. BERT-Small: https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-4_H-512_A-8.zip.

References

  1. Twitter. About Twitter, Inc, (2014). ISSN 01962892

  2. Osborne M, Lavrenko V, Petrovic S (2010) Streaming first story detection with application to Twitter. Comput Linguist ISSN 1095-6859. https://doi.org/10.1016/j.ygyno.2008.10.024

  3. Panem S, Gupta M, Varma V (2014) Structured information extraction from natural disaster events on twitter. In Proceedings of the 5th international workshop on web-scale knowledge representation retrieval & reasoning, pp 1–8

  4. Li C, Weng J, He Q, Yao Y, Datta A, Sun A, Lee B-S (2012) Twiner: named entity recognition in targeted twitter stream. In Proceedings of the 35th international ACM SIGIR conference on Research and development in information retrieval, pp 721–730

  5. Li J, Sun A, Han J, Li C (2020) A survey on deep learning for named entity recognition. IEEE Trans Knowl Data Eng

  6. Nadeau D, Sekine S (2007) A survey of named entity recognition and classification. Lingvist Invest 30(1):3–26

    Article  Google Scholar 

  7. Efthymios K, Theresa W, Johanna M (2011) Twitter sentiment analysis: the good the bad and the omg! In Proceedings of the international AAAI conference on web and social media, vol 5,

  8. Singh T, Kumari M (2016) Role of text pre-processing in twitter sentiment analysis. Proc Comput Sci 89:549–554

    Article  Google Scholar 

  9. Clark E, Araki K (2011) Text normalization in social media: progress, problems and applications for a pre-processing system of casual English. Proc-Soc Behav Sci 27:2–11

    Article  Google Scholar 

  10. Atefeh F, Khreich W (2015) A survey of techniques for event detection in twitter. Comput Intell 31(1):132–164

    Article  MathSciNet  Google Scholar 

  11. Firoj A, Ferda O, Muhammad I (2018) Crisismmd: Multimodal twitter datasets from natural disasters. In Proceedings of the international AAAI conference on web and social media, vol 12

  12. Qi Z, Jinlan F, Xiaoyu L, Xuanjing H (2018) Adaptive co-attention network for named entity recognition in tweets. AAAI, ISSN 0028-0836. https://doi.org/10.1001/jamapsychiatry.2014.1105

  13. Ritter A, Clark S, Etzioni M, Etzioni O (2011) Named entity recognition in tweets: an experimental study. In Proceedings of the conference on empirical methods in natural language processing(EMNLP’11), 2011. ISBN 978-1-937284-11-4. https://doi.org/10.1075/li.30.1.03nad

  14. Pennington J, Socher R, Manning C (2014) Glove: global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), ISBN 9781937284961. https://doi.org/10.3115/v1/D14-1162

  15. Armand J, Edouard G, Piotr B, Tomas M (2016) Bag of tricks for efficient text classification. arXiv:1607.01759

  16. Piotr B, Edouard G, Armand J, Tomas M (2017) Enriching word vectors with subword information. Trans Assoc Comput Linguist 5:135–146

    Article  Google Scholar 

  17. Tomas M, Kai C, Greg C, Jeffrey D (2013) Efficient estimation of word representations in vector space. arXiv:1301.3781

  18. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2818–2826

  19. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. arXiv:1706.03762

  20. Devlin J, Chang MW, Lee K, Toutanova K (2018) Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805

  21. Sharnagat R (2014) Named entity recognition literature survey. In 11305R013

  22. Li C, Sun A, Weng J, He Q (2015a) Tweet segmentation and its application to named entity recognition. IEEE Trans Knowl Data Eng 27(2):558–570. https://doi.org/10.1109/TKDE.2014.2327042

    Article  Google Scholar 

  23. Sang EF, Veenstra J (1999) Representing text chunks. In Proceedings of the ninth conference on European chapter of the Association for Computational Linguistics, pp 173–179. Association for Computational Linguistics

  24. Li K, Ai W, Tang Z, Zhang F, Jiang L, Li K, Hwang K (2015b) Hadoop recognition of biomedical named entity using conditional random fields. IEEE Trans Parallel Distrib Syst 26(11):3040–3051. https://doi.org/10.1109/TPDS.2014.2368568

    Article  Google Scholar 

  25. Wei C, Leaman R, Lu Z (2015) Simconcept: a hybrid approach for simplifying composite named entities in biomedical text. IEEE J Biomed Health Inform 19(4):1385–1391. https://doi.org/10.1109/JBHI.2015.2422651

    Article  Google Scholar 

  26. Li J, Sun A, Han J, Li C (2018) A survey on deep learning for named entity recognition. arXiv:1812.09449

  27. Manning C, Surdeanu M, Bauer J, Finkel J, Bethard S, McClosky D (2014) The stanford CoreNLP natural language processing toolkit. In Proceedings of 52nd annual meeting of the association for computational linguistics: system demonstrations, 2014. ISBN 9781941643006. https://doi.org/10.3115/v1/P14-5010

  28. Huang Z, Xu W, Yu K (2015) Bidirectional lstm-crf models for sequence tagging. arXiv:1508.01991

  29. Stanislawek T, Wróblewska A, Wójcika A, Ziembicki D, Biecek P (2019) Named entity recognition–is there a glass ceiling? arXiv:1910.02403

  30. Finkel JR, Grenager T, Manning C (2005) Incorporating non-local information into information extraction systems by Gibbs sampling. In Proceedings of the 43rd annual meeting on association for computational linguistics - ACL ’05, ISBN 3-540-63438-X. https://doi.org/10.3115/1219840.1219885

  31. Collins M, Singer Y (1999) Unsupervised models for named entity classification. Proceedings of EMNLP/VLC-99 10.1.1.114.3629

  32. Schuster M, Paliwal KK (1997) Bidirectional recurrent neural networks. IEEE Trans Signal Process 45(11):2673–2681

    Article  Google Scholar 

  33. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780

    Article  Google Scholar 

  34. Ma X, EHovy X (2016) End-to-end sequence labeling via bi-directional lstm-cnns-crf. arXiv:1603.01354

  35. Yang Z, Dai Z, Yang Y, Carbonell J, Salakhutdinov RR, Le QV (2019) Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in neural information processing systems, pp 5754–5764

  36. Lan Z, Chen M, Goodman S, Gimpel K, Sharma P, Soricut R (2019) Albert: a lite bert for self-supervised learning of language representations. arXiv:1909.11942

  37. Raffel C, Shazeer N, Roberts A, Lee K, Narang S, Matena M, Zhou Y, Li W, Liu PJ (2019) Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv:1910.10683

  38. Minaee S, Kalchbrenner N, Cambria E, Nikzad N, Chenaghlu M, Gao J (2020) Deep learning based text classification: a comprehensive review. arXiv:2004.03705

  39. Shibata Y, Kida T, Fukamachi S, Takeda M, Shinohara A, Shinohara T, Arikawa S (1999) Byte pair encoding: a text compression scheme that accelerates pattern matching. Technical report, Technical Report DOI-TR-161, Department of Informatics, Kyushu University

  40. Sennric R, Haddow B, Birch A (2015) Neural machine translation of rare words with subword units. arXiv:1508.07909

  41. Luong M-T, Pham H, Manning CD (2015) Effective approaches to attention-based neural machine translation. arXiv:1508.04025

  42. Arkhipov M, Trofimova M, Kuratov Y, Sorokin A (2019) Tuning multilingual transformers for named entity recognition on slavic languages. BSNLP–2019

  43. Bernal EA, Yang X, Li Q, Kumar J, Madhvanath S, Ramesh P, Bala R (2018) Deep temporal multimodal fusion for medical procedure monitoring using wearable sensors. IEEE Trans Multimed 20(1):107–118. https://doi.org/10.1109/TMM.2017.2726187

    Article  Google Scholar 

  44. Wang D, Cui P, Ou M, Zhu W (2015) Learning compact hash codes for multimodal representations using orthogonal deep structure. IEEE Trans Multimed 17(9):1404–1416. https://doi.org/10.1109/TMM.2015.2455415

    Article  Google Scholar 

  45. Ding C, Tao D (2015) Robust face recognition via multimodal deep face representation. IEEE Trans Multimed 17(11):2049–2058. https://doi.org/10.1109/TMM.2015.2477042

    Article  Google Scholar 

  46. Chen F, Ji R, Su J, Cao D, Gao Y (2018) Predicting microblog sentiments via weakly supervised multimodal deep learning. IEEE Trans Multimed 20(4):997–1007. https://doi.org/10.1109/TMM.2017.2757769

    Article  Google Scholar 

  47. Li H, Sun J, Xu Z, Chen L (2017) Multimodal 2d+3d facial expression recognition with deep fusion convolutional neural network. IEEE Trans Multimed 19(12):2816–2831. https://doi.org/10.1109/TMM.2017.2713408

    Article  Google Scholar 

  48. Pang L, Zhu S, Ngo C (2015) Deep multimodal learning for affective analysis and retrieval. IEEE Trans Multimed 17(11):2008–2020. https://doi.org/10.1109/TMM.2015.2482228

    Article  Google Scholar 

  49. Jiang Y, Wu Z, Tang J, Li Z, Xue X, Chang S (2018) Modeling multimodal clues in a hybrid deep learning framework for video classification. IEEE Trans Multimed 20(11):3137–3147. https://doi.org/10.1109/TMM.2018.2823900

    Article  Google Scholar 

  50. Shi J, Zheng X, Li Y, Zhang Q, Ying S (2018) Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of Aalzheimer’s disease. IEEE J Biomed Health Informat 22(1):173–183. https://doi.org/10.1109/JBHI.2017.2655720

    Article  Google Scholar 

  51. Ramachandram D, Taylor GW (2017) Deep multimodal learning: a survey on recent advances and trends. IEEE Signal Process Magaz 34(6):96–108. https://doi.org/10.1109/MSP.2017.2738401

    Article  Google Scholar 

  52. Moon S, Neves L, Carvalho V (2018a) Multimodal named entity disambiguation for noisy social media posts. In Proceedings of the 56th annual meeting of the association for computational linguistics (Volume 1: Long Papers). https://doi.org/10.3322/caac.21166

  53. Liu K, Li Y, Xu N, Natarajan P (2018) Learn to combine modalities in multimodal deep learning. arXiv:1805.11730

  54. Beinborn L, Botschen T, Gurevych I (2018) Multimodal grounding for language processing. arXiv:1806.06371

  55. Ngiam J, Khosla A Kim M, Nam J, Lee H, Ng AY (2011) Multimodal deep learning. In Proceedings of the 28th international conference on machine learning (ICML-11), pp 689–696

  56. Ebrahimi Kahou S, Michalski V, Konda K, Memisevic R, Pal C (2015) Recurrent neural networks for emotion recognition in video. In Proceedings of the 2015 ACM on international conference on multimodal interaction–ICMI ’15. ISBN 9781450339124. https://doi.org/10.1145/2818346.2830596

  57. Liu W, Zheng WL, Lu BL (2016) Emotion recognition using multimodal deep learning. In Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics). ISBN 9783319466712. https://doi.org/10.1007/978-3-319-46672-9_58

  58. Ebrahimi Kahou S, Bouthillier X, Lamblin P, Gulcehre C, Michalski V, Konda K, Jean S, Froumenty P, Dauphin Y, Boulanger-Lewandowski N, Chandias Ferrari R, Mirza M, Warde-Farley D, Courville A, Vincent P, Memisevic R, Pal C, Bengio Y (2016) EmoNets: multimodal deep learning approaches for emotion recognition in video. J Multimodal User Interfaces. https://doi.org/10.1007/s12193-015-0195-2

    Article  Google Scholar 

  59. Suk HI, Lee SW, Shen D (2014) Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. NeuroImage. https://doi.org/10.1016/j.neuroimage.2014.06.077

    Article  Google Scholar 

  60. Cheng X, Zhang L, Zheng Y (2018) Deep similarity learning for multimodal medical images. Comput Methods Biomech Biomed Eng Imag Vis. https://doi.org/10.1080/21681163.2015.1135299

    Article  Google Scholar 

  61. Di W, Pigou L, Kindermans PJ, Le NDH, Shao L, Dambre J, Odobez JM (2016) Deep dynamic neural networks for multimodal gesture segmentation and recognition. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2016.2537340

    Article  Google Scholar 

  62. Moon S, Neves L, Carvalho V (2018b) Multimodal named entity recognition for short social media posts. arXiv:1802.07862

  63. Diego E, Rafael P, Jens L, Giulio N (2018) Named entity recognition in twitter using images and text. In Lecture notes in computer science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), ISBN 9783319744322. https://doi.org/10.1007/978-3-319-74433-9_17

  64. Passos A, Kumar V, McCallum A (2014) Lexicon infused phrase embeddings for named entity resolution. arXiv:1404.5367

  65. Chiu JPC, Nichols E (2016) Named entity recognition with bidirectional lstm-cnns. Trans Assoc Comput Linguist 4:357–370

    Article  Google Scholar 

  66. Lample G, Ballesteros M, Subramanian S, Kawakami K, Dyer C (2016) Neural architectures for named entity recognition. arXiv:1603.01360

  67. Timothy B, de Marie-Catherine M, Bo H, Young-Bum K, Alan R, Xu W (2015) Shared tasks of the 2015 workshop on noisy user-generated text: twitter lexical normalization and named entity recognition. In Proceedings of the workshop on noisy user-generated text, pp 126–135

  68. Gustavo A, Suraj M, Pastor López MA, Thamar S(2017) A multi-task approach for named entity recognition in social media data. In Proceedings of the 3rd workshop on noisy usergenerated text, pp 148–153

  69. Strubell E, Verga P, Belanger D, McCallum A (2017) Fast and accurate entity recognition with iterated dilated convolutions. arXiv:1702.02098

  70. Choi H, Cho K, Bengio Y (2018) Fine-grained attention mechanism for neural machine translation. Neurocomputing, ISSN 18728286. https://doi.org/10.1016/j.neucom.2018.01.007

  71. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556

  72. Gomez AN, Zhang I, Swersky K, Gal Y, Hinton GE (2019) Learning sparse networks using targeted dropout. arXiv:abs/1905.13678

  73. Wu Y, Kaiming H (2018) Group normalization. In Proceedings of the European conference on computer vision (ECCV), pp 3–19

  74. Rodrigues W (2019) Sinerelu–an alternative to the relu activation function. https://medium.com/@wilder.rodrigues/sinerelu-an-alternative-to-the-relu-activation-function-e46a6199997d

  75. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958

    MathSciNet  MATH  Google Scholar 

  76. Deng J, Dong W, Socher R, Li L, Kai Li, Li Fei-Fei (2009) Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition, pp 248–255

  77. Sang EF, De Meulder F (2003) Introduction to the conll-2003 shared task: language-independent named entity recognition. arXiv:cs/0306050

Download references

Acknowledgements

The authors would like to thank Shervin Minaee for reviewing this work, and providing very useful comments to improve this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meysam Asgari-Chenaghlu.

Ethics declarations

Conflict of interest

The authors certify that there is no actual or potential conflict of interest in relation to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asgari-Chenaghlu, M., Feizi-Derakhshi, M.R., Farzinvash, L. et al. CWI: A multimodal deep learning approach for named entity recognition from social media using character, word and image features. Neural Comput & Applic 34, 1905–1922 (2022). https://doi.org/10.1007/s00521-021-06488-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06488-4

Keywords

Navigation