Skip to main content
Log in

Artificial neural network for prediction of thermal conductivity of rGO–metal oxide nanocomposite-based nanofluids

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

A four-input artificial neural network (ANN) model has been presented for the prediction of thermal conductivity of rGO–metal oxide nanocomposite-based nanofluids. For this, data of five types of water-based nanofluids containing rGO–metal oxide nanocomposites particles were used from the available literature. The four-input variables considered were molecular weight of nanocomposite, average particle size of nanocomposites, concentration, and temperature of nanofluid which exhibited thermal conductivity of the nanofluids as output. Using the same architecture, two ANN models were developed, one using a total of 185 data points and the other by dividing the data points in two sets (training and testing). The model agreed well with the experimental data and exhibited an R2 value of 0.956 for the testing data set. Also, the magnitude of deviation of the predicted thermal conductivity for all the data points was very less with an average residual of ± 0.048 W/mK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Choi SUS, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. Am Soc Mech Eng Fluids Eng Div Fed 231:99–105. https://doi.org/10.1115/1.1532008

    Article  Google Scholar 

  2. Maxwell JC (1954) A treatise on electricity and magnetism, 2nd edn. Clarendon Press, Oxford

    MATH  Google Scholar 

  3. Das SK, Choi SUS, Patel HE (2006) Heat transfer in nanofluids—a review. Heat Transf Eng 27:3–19. https://doi.org/10.1080/01457630600904593

    Article  Google Scholar 

  4. Suganthi KS, Rajan KS (2017) Metal oxide nanofluids: review of formulation, thermo-physical properties, mechanisms, and heat transfer performance. Renew Sustain Energy Rev 76:226–255. https://doi.org/10.1016/j.rser.2017.03.043

    Article  Google Scholar 

  5. Kumar V, Pandya N, Pandya B, Joshi A (2019) Synthesis of metal-based nanofluids and their thermo-hydraulic performance in compact heat exchanger with multi-louvered fins working under laminar conditions. J Therm Anal Calorim 135:2221–2235. https://doi.org/10.1007/s10973-018-7304-x

    Article  Google Scholar 

  6. Barai DP, Chichghare KK, Chawhan SS, Bhanvase BA (2020) Synthesis and characterization of nanofluids: thermal conductivity. Electr Conduct Particle Size Distrib. https://doi.org/10.1007/978-3-030-33774-2_1

    Article  Google Scholar 

  7. Devireddy S, Mekala CSR, Veeredhi VR (2016) Improving the cooling performance of automobile radiator with ethylene glycol water based TiO2 nanofluids. Int Commun Heat Mass Transf 78:121–126. https://doi.org/10.1016/j.icheatmasstransfer.2016.09.002

    Article  Google Scholar 

  8. Abbas F, Ali HM, Shah TR, Babar H, Janjua MM, Sajjad U, Amer M (2020) Nanofluid: potential evaluation in automotive radiator. J Mol Liq 297:112014. https://doi.org/10.1016/j.molliq.2019.112014

    Article  Google Scholar 

  9. Askari S, Lotfi R, Seifkordi A, Rashidi AM, Koolivand H (2016) A novel approach for energy and water conservation in wet cooling towers by using MWNTs and nanoporous graphene nanofluids. Energy Convers Manag 109:10–18. https://doi.org/10.1016/j.enconman.2015.11.053

    Article  Google Scholar 

  10. Bhattad A, Sarkar J, Ghosh P (2018) Improving the performance of refrigeration systems by using nanofluids: a comprehensive review. Renew Sustain Energy Rev 82:3656–3669. https://doi.org/10.1016/j.rser.2017.10.097

    Article  Google Scholar 

  11. Chichghare KK, Barai DP, Bhanvase BA (2019) Applications of nanofluids in solar thermal systems. In: Subramanian KRV, Rao TN, Balakrishnan A (eds) Nanofluids their engineering applications. Taylor & Francis, Boca Raton, pp 275–314

    Chapter  Google Scholar 

  12. Goel N, Taylor RA, Otanicar T (2020) A review of nanofluid-based direct absorption solar collectors: design considerations and experiments with hybrid PV/Thermal and direct steam generation collectors. Renew Energy 145:903–913. https://doi.org/10.1016/j.renene.2019.06.097

    Article  Google Scholar 

  13. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907. https://doi.org/10.1021/nl0731872

    Article  Google Scholar 

  14. Baby TT, Ramaprabhu S (2011) Enhanced convective heat transfer using graphene dispersed nanofluids. Nanoscale Res Lett 6:1–9. https://doi.org/10.1186/1556-276X-6-289

    Article  Google Scholar 

  15. Yu W, Xie H, Bao D (2010) Enhanced thermal conductivities of nanofluids containing graphene oxide nanosheets. Nanotechnology. https://doi.org/10.1088/0957-4484/21/5/055705

    Article  Google Scholar 

  16. Ghozatloo A, Shariaty-Niasar M, Rashidi AM (2013) Preparation of nanofluids from functionalized graphene by new alkaline method and study on the thermal conductivity and stability. Int Commun Heat Mass Transf 42:89–94. https://doi.org/10.1016/j.icheatmasstransfer.2012.12.007

    Article  Google Scholar 

  17. Barai DP, Bhanvase BA, Sonawane SH (2020) A review on graphene derivatives-based nanofluids: investigation on properties and heat transfer characteristics. Ind Eng Chem Res 59:10231–10277. https://doi.org/10.1021/acs.iecr.0c00865

    Article  Google Scholar 

  18. Devi MM, Sahu SR, Mukherjee P, Sen P, Biswas K (2015) Graphene: a self-reducing template for synthesis of graphene-nanoparticles hybrids. RSC Adv 5:62284–62289. https://doi.org/10.1039/c5ra10593e

    Article  Google Scholar 

  19. Çiplak Z, Yildiz N, Cąlimli A (2015) Investigation of graphene/Ag nanocomposites synthesis parameters for two different synthesis methods. Fulleren Nanotub Carbon Nanostruct 23:361–370. https://doi.org/10.1080/1536383X.2014.894025

    Article  Google Scholar 

  20. Zhao X, Zhang Z, Wang L, Xi K, Cao Q, Wang D, Yang Y, Du Y (2013) Excellent microwave absorption property of Graphene-coated Fe nanocomposites. Sci Rep 3:3421. https://doi.org/10.1038/srep03421

    Article  Google Scholar 

  21. van Trinh P, Ngoc-Anh N, Dinh-Quang L, Hung-Thang B, Ngoc-Hong P, Tuan-Hong N, Hong-Khoi P, Ngoc-Minh P (2017) thermal conductivity of ethylene glycol based copper nanoparticle decorated graphene nanofluids. Commun Phys 26:351–360. https://doi.org/10.15625/0868-3166/26/4/8705

    Article  Google Scholar 

  22. Fu Y, Mei T, Wang G, Guo A, Dai G, Wang S, Wang J, Li J, Wang X (2017) Investigation on enhancing effects of Au nanoparticles on solar steam generation in graphene oxide nanofluids. Appl Therm Eng 114:961–968. https://doi.org/10.1016/j.applthermaleng.2016.12.054

    Article  Google Scholar 

  23. Sadrolhosseini AR, Shameli K, Kharazmi A (2013) Preparation of graphene oxide stabilized nickel nanoparticles with thermal effusivity properties by laser ablation method. J Nanomater. https://doi.org/10.1155/2013/986764

    Article  Google Scholar 

  24. Yarmand H, Gharehkhani S, Shirazi SFS, Goodarzi M, Amiri A, Sarsam WS, Alehashem MS, Dahari M, Kazi SN (2016) Study of synthesis, stability and thermo-physical properties of graphene nanoplatelet/platinum hybrid nanofluid. Int Commun Heat Mass Transf 77:15–21. https://doi.org/10.1016/j.icheatmasstransfer.2016.07.010

    Article  Google Scholar 

  25. Bhanvase BA, Shende TP, Sonawane SH (2017) A review on graphene–TiO2 and doped graphene–TiO2 nanocomposite photocatalyst for water and wastewater treatment. Environ Technol Rev 6:1–14. https://doi.org/10.1080/21622515.2016.1264489

    Article  Google Scholar 

  26. Singh VK, Elomaa O, Johansson L-SS, Hannula S-PP, Koskinen J (2014) Lubricating properties of silica/graphene oxide composite powders. Carbon N Y 79:227–235. https://doi.org/10.1016/j.carbon.2014.07.063

    Article  Google Scholar 

  27. Jastrzębska AM, Karcz J, Letmanowski R, Zabost D, Ciecierska E, Zdunek J, Karwowska E, Siekierski M, Olszyna A, Kunicki A (2016) Synthesis of the RGO/Al2O3 core–shell nanocomposite flakes and characterization of their unique electrostatic properties using zeta potential measurements. Appl Surf Sci 362:577–594. https://doi.org/10.1016/j.apsusc.2015.10.125

    Article  Google Scholar 

  28. Ikram M, Tao Z, Ye J, Qayyum HA, Sun X, Xu J (2018) Enhanced physical properties of γ-Al2O3 –rGO hybrids prepared by solvothermal and hot-press processing. RSC Adv 8:8329–8337. https://doi.org/10.1039/C8RA00095F

    Article  Google Scholar 

  29. Deosarkar MP, Pawar SM, Bhanvase BA (2014) In-situ sonochemical synthesis of Fe3O4-graphene nanocomposite for lithium rechargeable batteries. Chem Eng Process Process Intensif 83:49–55. https://doi.org/10.1016/j.cep.2014.07.004

    Article  Google Scholar 

  30. Deosarkar MP, Pawar SM, Sonawane SH, Bhanvase BA (2013) Process intensification of uniform loading of SnO2 nanoparticles on graphene oxide nanosheets using a novel ultrasound assisted in situ chemical precipitation method. Chem Eng Process Process Intensif 70:48–54. https://doi.org/10.1016/j.cep.2013.05.008

    Article  Google Scholar 

  31. Zhang D, Chang H, Li P, Liu R, Xue Q (2016) Fabrication and characterization of an ultrasensitive humidity sensor based on metal oxide/graphene hybrid nanocomposite. Sens Actuat B Chem 225:233–240. https://doi.org/10.1016/j.snb.2015.11.024

    Article  Google Scholar 

  32. Du FP, Yang W, Zhang F, Tang CY, Liu SP, Yin L, Law WC (2015) Enhancing the heat transfer efficiency in graphene-epoxy nanocomposites using a magnesium oxide-graphene hybrid structure. ACS Appl Mater Interfaces 7:14397–14403. https://doi.org/10.1021/acsami.5b03196

    Article  Google Scholar 

  33. Rana S, Jonnalagadda SB (2017) CuO/graphene oxide nanocomposite as highly active and durable catalyst for selective oxidation of cyclohexane. ChemistrySelect 2:2277–2281. https://doi.org/10.1002/slct.201601637

    Article  Google Scholar 

  34. Tsai C-H, Fei P-H, Lin C-M, Shiu S-L (2018) CuO and CuO/graphene nanostructured thin films as counter electrodes for Pt-free dye-sensitized solar cells. Coatings 8:21. https://doi.org/10.3390/coatings8010021

    Article  Google Scholar 

  35. Mandhare H, Barai DP, Bhanvase BA, Saharan VKVK (2020) Preparation and thermal conductivity investigation of reduced graphene oxide-ZnO nanocomposite-based nanofluid synthesised by ultrasound-assisted method. Mater Res Innov 24:433–441. https://doi.org/10.1080/14328917.2020.1721809

    Article  Google Scholar 

  36. Baby TT, Ramaprabhu S (2011) Synthesis and nanofluid application of silver nanoparticles decorated graphene. J Mater Chem 21:9702–9709. https://doi.org/10.1039/c0jm04106h

    Article  Google Scholar 

  37. Baby TT, Sundara R (2011) Synthesis and transport properties of metal oxide decorated graphene dispersed nanofluids. J Phys Chem C 115:8527–8533. https://doi.org/10.1021/jp200273g

    Article  Google Scholar 

  38. Wang S, Li Y, Zhang H, Lin Y, Li Z, Wang W, Wu Q, Qian Y, Hong H, Zhi C (2016) Enhancement of thermal conductivity in water-based nanofluids employing TiO2/reduced graphene oxide composites. J Mater Sci 51:10104–10115. https://doi.org/10.1007/s10853-016-0239-3

    Article  Google Scholar 

  39. Barai DP, Bhanvase BA, Saharan VK (2019) Reduced graphene oxide-Fe3O4 nanocomposite based nanofluids: study on ultrasonic assisted synthesis, thermal conductivity, rheology and convective heat transfer. Ind Eng Chem Res 58:8349–8369. https://doi.org/10.1021/acs.iecr.8b05733

    Article  Google Scholar 

  40. Ahammed N, Asirvatham LG, Wongwises S (2016) Entropy generation analysis of graphene–alumina hybrid nanofluid in multiport minichannel heat exchanger coupled with thermoelectric cooler. Int J Heat Mass Transf 103:1084–1097. https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.070

    Article  Google Scholar 

  41. Bhanvase BA, Barai DP, Sonawane SH, Kumar N, Sonawane SS (2018) Intensified heat transfer rate with the use of nanofluids. Handbook of nanomaterials for industrial applications. Elsevier, pp 739–750. https://doi.org/10.1016/B978-0-12-813351-4.00042-0.

  42. Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam 1:187–191. https://doi.org/10.1021/i160003a005

    Article  Google Scholar 

  43. Bruggeman DAG (1935) Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann Phys 416:636–664. https://doi.org/10.1002/andp.19354160705

    Article  Google Scholar 

  44. Sundar LS, Sharma KV (2008) Thermal conductivity enhancement of nanoparticles in distilled water. Int J Nanoparticles 1:66. https://doi.org/10.1504/IJNP.2008.017619

    Article  Google Scholar 

  45. Chiam HW, Azmi WH, Usri NA, Mamat R, Adam NM (2017) Thermal conductivity and viscosity of Al2O3 nanofluids for different based ratio of water and ethylene glycol mixture. Exp Therm Fluid Sci 81:420–429. https://doi.org/10.1016/j.expthermflusci.2016.09.013

    Article  Google Scholar 

  46. Chon CH, Kihm KD, Lee SP, Choi SUS (2005) Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett 87:153107. https://doi.org/10.1063/1.2093936

    Article  Google Scholar 

  47. Patel HE, Anoop KB, Sundararajan T, Das SK (2008) Model for thermal conductivity of CNT-nanofluids. Bull Mater Sci 31:387–390. https://doi.org/10.1007/s12034-008-0060-y

    Article  Google Scholar 

  48. Aparna Z, Michael M, Pabi SK, Ghosh S (2019) Thermal conductivity of aqueous Al2O3/Ag hybrid nanofluid at different temperatures and volume concentrations: an experimental investigation and development of new correlation function. Powder Technol 343:714–722. https://doi.org/10.1016/j.powtec.2018.11.096

    Article  Google Scholar 

  49. Einstein A (1956) Investigations on the theory of the Brownian movement. Dover Publications Inc., New York

    MATH  Google Scholar 

  50. Krieger IM, Dougherty TJ (1959) A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans Soc Rheol 3:137–152. https://doi.org/10.1122/1.548848

    Article  MATH  Google Scholar 

  51. Chandrasekar M, Suresh S, Chandra Bose A (2010) Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Exp. Therm. Fluid Sci. 34:210–216. https://doi.org/10.1016/j.expthermflusci.2009.10.022

    Article  Google Scholar 

  52. Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 11:151–170. https://doi.org/10.1080/08916159808946559

    Article  Google Scholar 

  53. Vajjha RS, Das DK (2009) Specific heat measurement of three nanofluids and development of new correlations. J Heat Transf 131:071601. https://doi.org/10.1115/1.3090813

    Article  Google Scholar 

  54. Said Z, Saidur R (2017) Thermophysical properties of metal oxides nanofluids. Nanofluid heat and mass transfer in engineering problems. InTech. https://doi.org/10.5772/65610.

  55. Karimipour A (2015) New correlation for Nusselt number of nanofluid with Ag/Al2O3/Cu nanoparticles in a microchannel considering slip velocity and temperature jump by using lattice Boltzmann method. Int J Therm Sci 91:146–156. https://doi.org/10.1016/j.ijthermalsci.2015.01.015

    Article  Google Scholar 

  56. Syam-Sundar L, Singh MK (2013) Convective heat transfer and friction factor correlations of nanofluid in a tube and with inserts: a review. Renew Sustain Energy Rev 20:23–35. https://doi.org/10.1016/j.rser.2012.11.041

    Article  Google Scholar 

  57. Tyagi M, Bhanvase BA, Pandharipande SL (2014) Computational studies on release of corrosion inhibitor from layer-by-layer assembled silica nanocontainer. Ind Eng Chem Res 53:9764–9771. https://doi.org/10.1021/ie5010064

    Article  Google Scholar 

  58. Beigi M, Torki-Harchegani M, Tohidi M (2017) Experimental and ANN modeling investigations of energy traits for rough rice drying. Energy 141:2196–2205. https://doi.org/10.1016/j.energy.2017.12.004

    Article  Google Scholar 

  59. Zaferani SPG, Emami MRS, Amiri MK, Binaeian E (2019) Optimization of the removal Pb (II) and its Gibbs free energy by thiosemicarbazide modified chitosan using RSM and ANN modeling. Int J Biol Macromol 139:307–319. https://doi.org/10.1016/j.ijbiomac.2019.07.208

    Article  Google Scholar 

  60. Dadrasi A, Albooyeh AR, Fooladpanjeh S, Shad MD, Beynaghi M (2020) RSM and ANN modeling of the energy absorption behavior of steel thin-walled columns: a multi-objective optimization using the genetic algorithm. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-020-02643-5

    Article  Google Scholar 

  61. Karimi H, Yousefi F (2012) Application of artificial neural network-genetic algorithm (ANN-GA) to correlation of density in nanofluids. Fluid Phase Equilib 336:79–83. https://doi.org/10.1016/j.fluid.2012.08.019

    Article  Google Scholar 

  62. Heidari E, Sobati MA, Movahedirad S (2016) Accurate prediction of nanofluid viscosity using a multilayer perceptron artificial neural network (MLP-ANN). Chemom Intell Lab Syst 155:73–85. https://doi.org/10.1016/j.chemolab.2016.03.031

    Article  Google Scholar 

  63. Zhao N, Li Z (2017) Experiment and artificial neural network prediction of thermal conductivity and viscosity for alumina-water nanofluids. Materials (Basel). https://doi.org/10.3390/ma10050552

    Article  Google Scholar 

  64. Buongiorno J, Venerus DC, Prabhat N, McKrell T, Townsend J, Christianson R, Tolmachev YV, Keblinski P, Hu LW, Alvarado JL, Bang IC, Bishnoi SW, Bonetti M, Botz F, Cecere A, Chang Y, Chen G, Chen H, Chung SJ, Chyu MK, Das SK, Di Paola R, Ding Y, Dubois F, Dzido G, Eapen J, Escher W, Funfschilling D, Galand Q, Gao J, Gharagozloo PE, Goodson KE, Gutierrez JG, Hong H, Horton M, Hwang KS, Iorio CS, Jang SP, Jarzebski AB, Jiang Y, Jin L, Kabelac S, Kamath A, Kedzierski MA, Kieng LG, Kim C, Kim J-HH, Kim S, Lee SH, Leong KC, Manna I, Michel B, Ni R, Patel HE, Philip J, Poulikakos D, Reynaud C, Savino R, Singh PK, Song P, Sundararajan T, Timofeeva E, Tritcak T, Turanov AN, Van Vaerenbergh S, Wen D, Witharana S, Yang C, Yeh W-HH, Zhao X-ZZ, Zhou S-QQ (2009) A benchmark study on the thermal conductivity of nanofluids. J Appl Phys 106:094312. https://doi.org/10.1063/1.3245330

    Article  Google Scholar 

  65. Hemmat Esfe M, Afrand M, Yan WM, Akbari M (2015) Applicability of artificial neural network and nonlinear regression to predict thermal conductivity modeling of Al2O3-water nanofluids using experimental data. Int Commun Heat Mass Transf 66:246–249. https://doi.org/10.1016/j.icheatmasstransfer.2015.06.002

    Article  Google Scholar 

  66. Hemmat Esfe M, Saedodin S, Naderi A, Alirezaie A, Karimipour A, Wongwises S, Goodarzi M, Bin Dahari M (2015) Modeling of thermal conductivity of ZnO-EG using experimental data and ANN methods. Int Commun Heat Mass Transf 63:35–40. https://doi.org/10.1016/j.icheatmasstransfer.2015.01.001

    Article  Google Scholar 

  67. Rostamian SH, Biglari M, Saedodin S, Hemmat Esfe M (2017) An inspection of thermal conductivity of CuO-SWCNTs hybrid nanofluid versus temperature and concentration using experimental data, ANN modeling and new correlation. J Mol Liq 231:364–369. https://doi.org/10.1016/j.molliq.2017.02.015

    Article  Google Scholar 

  68. Hojjat M, Etemad SG, Bagheri R, Thibault J (2011) Thermal conductivity of non-Newtonian nanofluids: experimental data and modeling using neural network. Int J Heat Mass Transf 54:1017–1023. https://doi.org/10.1016/j.ijheatmasstransfer.2010.11.039

    Article  MATH  Google Scholar 

  69. Longo GA, Zilio C, Ceseracciu E, Reggiani M (2012) Application of artificial neural network (ANN) for the prediction of thermal conductivity of oxide-water nanofluids. Nano Energy 1:290–296. https://doi.org/10.1016/j.nanoen.2011.11.007

    Article  Google Scholar 

  70. Ahmadloo E, Azizi S (2016) Prediction of thermal conductivity of various nanofluids using artificial neural network. Int Commun Heat Mass Transf 74:69–75. https://doi.org/10.1016/j.icheatmasstransfer.2016.03.008

    Article  Google Scholar 

  71. Wang X, Yan X, Gao N, Chen G (2019) Prediction of thermal conductivity of various nanofluids with ethylene glycol using artificial neural network. J Therm Sci. https://doi.org/10.1007/s11630-019-1158-9

    Article  Google Scholar 

  72. Alrashed AAAA, Gharibdousti MS, Goodarzi M, de Oliveira LR, Safaei MR, Bandarra-Filho EP (2018) Effects on thermophysical properties of carbon based nanofluids: experimental data, modelling using regression, ANFIS and ANN. Int J Heat Mass Transf 125:920–932. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.142

    Article  Google Scholar 

  73. Tahani M, Vakili M, Khosrojerdi S (2016) Experimental evaluation and ANN modeling of thermal conductivity of graphene oxide nanoplatelets/deionized water nanofluid. Int Commun Heat Mass Transf 76:358–365. https://doi.org/10.1016/j.icheatmasstransfer.2016.06.003

    Article  Google Scholar 

  74. Chawhan SS, Barai DP, Bhanvase BA (2020) Sonochemical preparation of rGO-SnO2 nanocomposite and its nanofluids: characterization thermal conductivity rheological and convective heat transfer investigation. Mater Today Commun. https://doi.org/10.1016/j.mtcomm.2020.101148

    Article  Google Scholar 

  75. Sarode HA, Barai DP, Bhanvase BA, Ugwekar RP, Saharan V (2020) Investigation on preparation of graphene oxide-CuO nanocomposite based nanofluids with the aid of ultrasound assisted method for intensified heat transfer properties. Mater Chem Phys 251:123102. https://doi.org/10.1016/j.matchemphys.2020.123102

    Article  Google Scholar 

  76. Koshta NR, Bhanvase BA, Chawhan SS, Barai DP, Sonawane SH (2019) Investigation on the thermal conductivity and convective heat transfer enhancement in helical coiled heat exchanger using ultrasonically prepared rGO–TiO2 nanocomposite-based nanofluids. Indian Chem Eng. https://doi.org/10.1080/00194506.2019.1658545

    Article  Google Scholar 

  77. Singh K, Barai DP, Chawhan SS, Bhanvase BA, Saharan V (2020) Synthesis, characterization and heat transfer study of reduced graphene oxide-Al2O3 nanocomposite based nanofluids: investigation on thermal conductivity and rheology. Mater Today Commun. https://doi.org/10.1016/j.mtcomm.2020.101986

    Article  Google Scholar 

  78. Bhanvase B, Barai D (2021) Nanofluids for heat and mass transfer. Elsevier. https://doi.org/10.1016/C2019-0-03241-4

  79. Chawhan SS, Barai DP, Bhanvase BA (2021) Investigation on thermophysical properties, convective heat transfer and performance evaluation of ultrasonically synthesized Ag-doped TiO2 hybrid nanoparticles based highly stable nanofluid in a minichannel. Therm Sci Eng Prog. https://doi.org/10.1016/j.tsep.2021.100928

    Article  Google Scholar 

  80. Xie H, Wang J, Xi T (2002) Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J Appl Phys 91: 4568–4572. http://link.aip.org/link/?JAP/91/4568/1

  81. Kim SH, Choi SR, Kim D (2006) Thermal conductivity of metal-oxide nanofluids: particle size dependence and effect of laser irradiation. J Heat Transfer 129:298–307. https://doi.org/10.1115/1.2427071

    Article  Google Scholar 

  82. Beck MP, Yuan Y, Warrier P, Teja AS (2009) The effect of particle size on the thermal conductivity of alumina nanofluids. J Nanoparticle Res 11:1129–1136. https://doi.org/10.1007/s11051-008-9500-2

    Article  Google Scholar 

  83. Yang B, Han ZH (2006) Temperature-dependent thermal conductivity of nanorod-based nanofluids. Appl Phys Lett 89:083111. https://doi.org/10.1063/1.2338424

    Article  Google Scholar 

  84. Liu M-S, Lin MC-C, Tsai CY, Wang C-C (2006) Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method. Int J Heat Mass Transf 49:3028–3033. https://doi.org/10.1016/j.ijheatmasstransfer.2006.02.012

    Article  Google Scholar 

  85. Godson L, Lal DM, Wongwises S (2010) Measurement of thermo physical properties of metallic nanofluids for high temperature applications. Nanoscale Microscale Thermophys Eng 14:152–173. https://doi.org/10.1080/15567265.2010.500319

    Article  Google Scholar 

  86. Radkar RN, Bhanvase BA, Barai DP, Sonawane SH (2019) Intensified convective heat transfer using ZnO nanofluids in heat exchanger with helical coiled geometry at constant wall temperature. Mater Sci Energy Technol 2:161–170. https://doi.org/10.1016/j.mset.2019.01.007

    Article  Google Scholar 

  87. Khedkar RS, Sonawane SS, Wasewar KL (2012) Influence of CuO nanoparticles in enhancing the thermal conductivity of water and monoethylene glycol based nanofluids. Int Commun Heat Mass Transf 39:665–669. https://doi.org/10.1016/j.icheatmasstransfer.2012.03.012

    Article  Google Scholar 

  88. Xing M, Yu J, Wang R (2015) Thermo-physical properties of water-based single-walled carbon nanotube nanofluid as advanced coolant. Appl Therm Eng 87:344–351. https://doi.org/10.1016/j.applthermaleng.2015.05.033

    Article  Google Scholar 

  89. Ahammed N, Asirvatham LG, Titus J, Bose JR, Wongwises S (2016) Measurement of thermal conductivity of graphene-water nanofluid at below and above ambient temperatures. Int Commun Heat Mass Transf 70:66–74. https://doi.org/10.1016/j.icheatmasstransfer.2015.11.002

    Article  Google Scholar 

  90. Lanjewar A, Bhanvase B, Barai D, Chawhan S, Sonawane S (2019) Intensified thermal conductivity and convective heat transfer of ultrasonically prepared CuO-polyaniline nanocomposite based nanofluids in helical coil heat exchanger. Period Polytech Chem Eng. https://doi.org/10.3311/ppch.13285

    Article  Google Scholar 

  91. Pandharipande SL, Badhe YP (2004) elite-ANN©

Download references

Acknowledgements

The authors are thankful to Laxminarayan Institute of Technology for support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat A. Bhanvase.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barai, D.P., Bhanvase, B.A. & Pandharipande, S.L. Artificial neural network for prediction of thermal conductivity of rGO–metal oxide nanocomposite-based nanofluids. Neural Comput & Applic 34, 271–282 (2022). https://doi.org/10.1007/s00521-021-06366-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06366-z

Keywords

Navigation