Skip to main content
Log in

Blind source separation for the analysis sparse model

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Sparsity of the signal has been shown to be very useful for blind source separation (BSS) problem which aims at recovering unknown sources from their mixtures. In this paper, we propose a novel algorithm based on the analysis sparse constraint of the source over an adaptive analysis dictionary to address BSS problem. This method has an alternating scheme by keeping all but one unknown fixed at a time so that the dictionary, the source, and the mixing matrix are estimated alternatively. In order to make better use of the sparsity constrain, \(l_{0}\)-norm is utilized directly for a more exact solution instead of its other relaxation, such as \(l_{\mathrm{p}}\)-norm (\(0<p\le 1\)). Numerical experiments show that the proposed method indeed improves the separation performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Available at: http://md.cosmostat.org/Generalized_MCA.html.

  2. Available at: http://md.cosmostat.org.

  3. Available at: https://elad.cs.technion.ac.il/software/.

References

  1. Hyvärinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw 13(4):411–430

    Article  Google Scholar 

  2. Bell A, Sejnowski T (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7(6):1129–1159

    Article  Google Scholar 

  3. Gaeta M, Lacoume JL (1990) Source separation without prior knowledge: the maximum likelihood solution. In: Proceeding EUSIPCO’90, pp 621–624

  4. Belouchrani A, Cardoso JF (1994) Maximum likelihood source separation for discrete sources. In: Proceeding EUSIPCO’94, pp 768–771

  5. Montoya-Martínez J, Cardoso JF, Gramfort A (2017) Caveats with stochastic gradient and maximum likelihood based ica for eeg. Lecture Note Computer Sci 10169:279–289

    Article  Google Scholar 

  6. Tillet P, Kung HT, Cox D (2017) Infomax-ica using hessian-free optimization. Proceeding ICASSP’2017, pp 2537–2541

  7. Zibulevsky M (2003) Sparse source separation with relative newton method. Proceeding ICA 2003:897–902

  8. Choi H, Choi S (2007) A relative trust-region algorithm for independent component analysis. Neurocomputing 70(7):1502–1510

    Article  Google Scholar 

  9. Byrd R, Lu P, Nocedal J, Zhu C (2003) A limited memory algorithm for bound constrained optimization. SIAM J Sci Comput 16(5):1190–1208

    Article  MathSciNet  Google Scholar 

  10. Ablin P, Cardoso J, Gramfort A (2018) Faster independent component analysis by preconditioning with hessian approximations. IEEE Trans Signal Process 66(15):4040–4049

    Article  MathSciNet  Google Scholar 

  11. Lee D, Seung H (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401(6755):788–791

    Article  Google Scholar 

  12. Boutsidis C, Gallopoulos E (2008) Svd based initialization: a head start for nonnegative matrix factorization. Pattern Recognit 41(4):1350–1362

    Article  Google Scholar 

  13. Deng Z, Zhang S, Yang L, Zong M, Cheng D (2018) Sparse sample self-representation for subspace clustering. Neural Comput Appl 29:43–49

    Article  Google Scholar 

  14. Zhu X, Suk HI, Huang H, Shen D (2017) Low-rank graph-regularized structured sparse regression for identifying genetic biomarkers. IEEE Trans Big Data 3(4):405–414

    Article  Google Scholar 

  15. Zhang H, Wang S, Xu X, Chow TWS, Wu QMJ (2018) Tree2vector: learning a vectorial representation for tree-structured data. IEEE Trans Neural Netw Learn Syst 29(11):5304–5318

    Article  MathSciNet  Google Scholar 

  16. Alon U, Barkai N, Notterman D, Gish K, Ybarra S, Mack D, Levine A (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci United States of America 96(12):6745–6750

    Article  Google Scholar 

  17. Shipp MA et al (2002) Diffuse large b-cell lymphoma outcome prediction by gene-expressionprofilingandsupervisedmachinelearning. NatureMed 8(1):68–74

    Google Scholar 

  18. Huang H, Zhao H, Li X, Ding S, Zhao L, Li Z (2018) An accurate and efficient device-free localization approach based on sparse coding in subspace. IEEE Access 6:61782–61799

    Article  Google Scholar 

  19. Starck JL, Elad M, Donoho D (2004) Redundant multiscale transforms and their application for morphological component separation. Adv Imagin Electron Phys 132(4):287–348

    Article  Google Scholar 

  20. Bobin J, Moudden Y, Starck JL, Elad M (2006) Morphological diversity and source separation. IEEE Signal Process Lett 13(7):409–412

    Article  Google Scholar 

  21. Bobin J, Starck JL, Fadili J, Moudden Y (2007) Sparsity and morphological diversity in blind source separation. Image Process, IEEE Trans Image Process 16(11):2662–2674

    Article  MathSciNet  Google Scholar 

  22. Abolghasemi V, Ferdowsi S, Sanei S (2012) Blind separation of image sources via adaptive dictionary learning. IEEE Trans Image Process 21(6):2921–2930

    Article  MathSciNet  Google Scholar 

  23. Aharon M, Elad M, Bruckstein A (2006) K-svd: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 54(11):4311–4322

    Article  Google Scholar 

  24. Zhao X, Zhou G, Dai W, Xu T, Wang W (2013) Joint image separation and dictionary learning. Proceedings DSP’2013, pp 1–6

  25. Dai W, Xu T, Wang W (2011) Simultaneous codeword optimization (simco) for dictionary update and learning. IEEE Trans Signal Process 60(12):6340–6353

    Article  MathSciNet  Google Scholar 

  26. Nam S, Davies M, Elad M, Gribonval R (2011) The cosparse analysis model and algorithms. Appl Comput Harmonic Anal 34(1):30–56

    Article  MathSciNet  Google Scholar 

  27. Giryes R, Nam S, Elad M, Gribonval R, Davies M (2012) Greedylike algorithms for the cosparse analysis model. Linear Algebra Appl 441(1):22–60

    MATH  Google Scholar 

  28. Elad M, Milanfar P, Rubinstein R (2007) Analysis versus synthesis in signal priors. Inverse Probl 23(3):947

    Article  MathSciNet  Google Scholar 

  29. Fang W, Wang H, Xu B, Zhang Y (2016) Blind source separation using analysis sparse constraint. Electron Lett 52(13):1112–1114

    Article  Google Scholar 

  30. Rubinstein R, Peleg T, Elad M (2013) Analysis k-svd: a dictionary-learning algorithm for the analysis sparse model. IEEE Trans Signal Process 61(3):661–677

    Article  MathSciNet  Google Scholar 

  31. Zhang Y, Wang H, Yu T, Wang W (2013) Subset pursuit for analysis dictionary learning. Proceeding EUSIPCO’2013, pp 1–5

  32. Cai JF, Osher S, Shen Z (2009) Split bregman methods and frame based image restoration. Multiscale Model and Simul 8(2):337–369

    Article  MathSciNet  Google Scholar 

  33. Wu F, Jing X, Sun Y, Sun J, Huang L, Cui F, Sun Y (2018) Cross-project and within-project semisupervised software defect prediction: a unified approach. IEEE Trans Reliab 67(2):581–587

    Article  Google Scholar 

  34. Wu F, Xi W, Han L, Jing X, Ji Y (2019) Multi-view synthesis and analysis dictionaries learning for classification. IEICE Trans Inf Syst E102 D(3):659–662

    Article  Google Scholar 

Download references

Acknowledgements

Thank all the referees and the editorial board members for their insightful comments and suggestions, which improved our paper significantly. This study was funded by the National Natural Science Foundation of China under Grant No. 11501351.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjuan Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, S., Zhang, H. & Miao, Z. Blind source separation for the analysis sparse model. Neural Comput & Applic 33, 8543–8553 (2021). https://doi.org/10.1007/s00521-020-05606-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-05606-y

Keywords

Navigation