Skip to main content
Log in

EEG extended source imaging with structured sparsity and \(L_1\)-norm residual

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

It is a long-standing challenge to reconstruct the locations and extents of cortical neural activities from electroencephalogram (EEG) recordings, especially when the EEG signals contain strong background activities and outlier artifacts. In this work, we propose a robust source imaging method called \(L_1\)R-SSSI. To alleviate the effect of outliers in EEG, \(L_1\)R-SSSI employs the \(L_1\)-loss to model the residual error. To obtain locally smooth and globally sparse estimations, \(L_1\)R-SSSI adopts the structured sparsity constraint, which incorporates the \(L_1\)-norm regularization in both the variation and original source domain. The estimations of \(L_1\)R-SSSI are efficiently obtained using the alternating direction method of multipliers (ADMM) algorithm. Results of simulated and experimental data analysis demonstrate that \(L_1\)R-SSSI effectively suppresses the effect of the outlier artifacts in EEG. \(L_1\)R-SSSI outperforms the traditional \(L_2\)-norm-based methods (e.g., wMNE, LORETA), and SISSY, which employs \(L_2\)-norm loss and structured sparsity, indicated by the larger AUC (average AUC \(>0.80\)), smaller SD (average SD \(<50\) mm), DLE (average DLE \(<10\) mm) and RMSE (average RMSE \(<1.75\)) values under all the numerically simulated conditions. \(L_1\)R-SSSI also provides better estimations of extended sources than the method with \(L_1\)-loss and \(L_p\)-norm regularization term (e.g., LAPPS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. https://openneuro.org/datasets/ds000117.

References

  1. Bai X, Towle VL, He EJ, He B (2007) Evaluation of cortical current density imaging methods using intracranial electrocorticograms and functional MRI. NeuroImage 35(2):598–608

    Article  Google Scholar 

  2. Baillet S, Mosher JC, Leahy RM (2001) Electromagnetic brain mapping. IEEE Signal Process Mag 18(6):14–30

    Article  Google Scholar 

  3. Becker H (2014) Denoising, separation and localization of EEG sources in the context of epilepsy. Ph.D. thesis

  4. Becker H, Albera L, Comon P, Nunes JC, Gribonval R, Fleureau J, Guillotel P, Merlet I (2017) SISSY: an efficient and automatic algorithm for the analysis of EEG sources based on structured sparsity. NeuroImage 157:157–172

    Article  Google Scholar 

  5. Blankertz B, Dornhege G, Krauledat M, Müller KR, Curio G (2007) The non-invasive Berlin brain-computer interface: fast acquisition of effective performance in untrained subjects. NeuroImage 37(2):539–550

    Article  Google Scholar 

  6. Bore JC, Yi C, Li P, Li F, Harmah DJ, Si Y, Guo D, Yao D, Wan F, Xu P (2019) Sparse EEG source localization using LAPPS: least absolute l–p penalized solution. IEEE Trans Biomed Eng 66(7):1927–1939

    Article  Google Scholar 

  7. Cai C, Sekihara K, Nagarajan SS (2018) Hierarchical multiscale Bayesian algorithm for robust MEG/EEG source reconstruction. NeuroImage

  8. Chang W, Nummenmaa A, Hsieh J, Lin F (2010) Spatially sparse source cluster modeling by compressive neuromagnetic tomography. NeuroImage 53(1):146–160

    Article  Google Scholar 

  9. Ding L (2009) Reconstructing cortical current density by exploring sparseness in the transform domain. Phys Med Biol 54(9):2683–2697

    Article  Google Scholar 

  10. Ding L, He B (2008) Sparse source imaging in electroencephalography with accurate field modeling. Hum Brain Mapp 29(9):1053–1067

    Article  Google Scholar 

  11. Fei W, Ling P, Yuan Y, Wenxian Y, Peilin L (2017) Efficient and robust recovery of sparse signal and image using generalized nonconvex regularization. IEEE Trans Comput Imaging

  12. Foucart S, Lai M (2009) Sparsest solutions of underdetermined linear systems via lq-minimization for 0 \(< q < 1\). Appl Comput Harmon Anal 26(3):395–407

    Article  MathSciNet  Google Scholar 

  13. Friston KJ, Harrison LM, Daunizeau J, Kiebel SJ, Phillips C, Trujillobarreto NJ, Henson RN, Flandin G, Mattout J (2008) Multiple sparse priors for the M/EEG inverse problem. NeuroImage 39(3):1104–1120

    Article  Google Scholar 

  14. Grova C, Daunizeau J, Lina J, Benar CG, Benali H, Gotman J (2006) Evaluation of EEG localization methods using realistic simulations of interictal spikes. NeuroImage 29(3):734–753

    Article  Google Scholar 

  15. He B, Sohrabpour A, Brown EN, Liu Z (2018) Electrophysiological source imaging: a noninvasive window to brain dynamics. Annu Rev Biomed Eng 20(1):171–196

    Article  Google Scholar 

  16. He B, Yang L, Wilke C, Yuan H (2011) Electrophysiological imaging of brain activity and connectivity-challenges and opportunities. IEEE Trans Biomed Eng 58(7):1918–1931

    Article  Google Scholar 

  17. Henson RN, Goshengottstein Y, Ganel T, Otten LJ, Quayle AH, Rugg MD (2003) Electrophysiological and haemodynamic correlates of face perception, recognition and priming. Cereb Cortex 13(7):793–805

    Article  Google Scholar 

  18. Hong M, Luo Z (2012) On the linear convergence of the alternating direction method of multipliers. arXiv: Optimization and Control 162(1), 165–199

  19. Hou Y, Zhou L, Jia S, Lun X (2020) A novel approach of decoding EEG four-class motor imagery tasks via scout ESI and CNN. J Neural Eng 17(1):016048

    Article  Google Scholar 

  20. Kiebel SJ, Daunizeau J, Phillips C, Friston KJ (2008) Variational Bayesian inversion of the equivalent current dipole model in EEG/MEG. Neuroimage 39(2):728–741

    Article  Google Scholar 

  21. Liu K, Yu ZL, Wu W, Gu Z, Li Y, Nagarajan SS (2016) Bayesian electromagnetic spatio-temporal imaging of extended sources with Markov random field and temporal basis expansion. NeuroImage 139:385–404

    Article  Google Scholar 

  22. Liu K, Yu ZL, Wu W, Gu Z, Li Y, Nagarajan SS (2018) Variation sparse source imaging based on conditional mean for electromagnetic extended sources. Neurocomputing 313:96–110

    Article  Google Scholar 

  23. Lucka F, Pursiainen S, Burger M, Wolters CH (2012) Hierarchical bayesian inference for the EEG inverse problem using realistic fe head models: Depth localization and source separation for focal primary currents. Neuroimage 61(4):1364–1382

    Article  Google Scholar 

  24. Owen JP, Wipf D, Attias H, Sekihara K, Nagarajan SS (2012) Performance evaluation of the champagne source reconstruction algorithm on simulated and real M/EEG data. NeuroImage 60(1):305–323

    Article  Google Scholar 

  25. Pascual-Marqui R, Esslen M, Kochi K, Lehmann D (2002) Functional imaging with low-resolution brain electromagnetic tomography (loreta): a review. Methods Find Exp Clin Pharmacol 24(Suppl C):91–95

    Google Scholar 

  26. Rolle CE, Fonzo GA, Wu W, Toll R, Jha MK, Cooper C, Chin-Fatt C, Pizzagalli DA, Trombello JM, Deckersbach T et al (2020) Cortical connectivity moderators of antidepressant versus placebo treatment response in major depressive disorder: secondary analysis of a randomized clinical trial. JAMA Psychiatry 77(4):397–408

    Article  Google Scholar 

  27. Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM (2011) Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci 2011:879716–879716

    Article  Google Scholar 

  28. Trujillo-Barreto NJ, Aubert-Vázquez E, Penny WD (2008) Bayesian M/EEG source reconstruction with spatio-temporal priors. NeuroImage 39:318–335

    Article  Google Scholar 

  29. Wagner A, Wright J, Ganesh A, Zhou Z, Mobahi H, Ma Y (2012) Toward a practical face recognition system: robust alignment and illumination by sparse representation. IEEE Trans Pattern Anal Mach Intell 34(2):372–386

    Article  Google Scholar 

  30. Wakeman DG, Henson RN (2015) A multi-subject, multi-modal human neuroimaging dataset. Sci Data 2(1):150001–150001

    Article  Google Scholar 

  31. Wang Y, Yin W, Zeng J (2019) Global convergence of ADMM in nonconvex nonsmooth optimization. J Sci Comput 78(1):29–63

    Article  MathSciNet  Google Scholar 

  32. Wen F, Pei L, Yang Y, Yu W, Liu P (2017) Efficient and robust recovery of sparse signal and image using generalized nonconvex regularization. IEEE Trans Comput Imaging 3(4):566–579

    Article  MathSciNet  Google Scholar 

  33. Wipf D, Nagarajan SS (2009) A unified Bayesian framework for MEG/EEG source imaging. NeuroImage 44(3):947–966

    Article  Google Scholar 

  34. Wu W, Nagarajan SS, Chen Z (2016) Bayesian machine learning: EEG/MEG signal processing measurements. IEEE Signal Process Mag 33(1):14–36

    Article  Google Scholar 

  35. Xiao Y, Zhu H, Wu SY (2013) Primal and dual alternating direction algorithms for l1-l1-norm minimization problems in compressive sensing. Comput Optim Appl 54(2):441–459

    Article  MathSciNet  Google Scholar 

  36. Xu F, Liu K, Deng X, Wang G (2019) Imaging EEG extended sources based on variation sparsity with L1-norm residual. In: Liang P, Goel V, Shan C (eds) Brain informatics. Springer International Publishing, Cham, pp 95–104

    Chapter  Google Scholar 

  37. Xu P, Tian Y, Chen H, Yao D (2007) Lp norm iterative sparse solution for EEG source localization. IEEE Trans Bio-Med Eng 54:400–409

    Article  Google Scholar 

  38. Zhu M, Zhang W, Dickens D, Ding L (2014) Reconstructing spatially extended brain sources via enforcing multiple transform sparseness. NeuroImage 86:280–293

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants 61703065 and 61836003, Chongqing Research Program of Application Foundation and Advanced Technology under Grant cstc2018jcyjAX0151, the Science and Technology Research Program of Chongqing Municipal Education Commission under Grant KJQN201800612 and Chongqing Graduate Research and Innovation Project under Grant CYS20257.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ke Liu or Guoyin Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

The schema of \(L_1\)R-SSSI is summarized as follows.

figure a

Appendix

Figure 7 shows the performance metrics under different values of \(\lambda _1\) and \(\lambda _2\). Clearly, the selection of regularization parameters has a great impact on algorithm performance. According to Fig. 7, \(L_1R\)-SSSI achieves better performance for \(\lambda _1\in [1.6,2.1]\), \(\lambda _2\in [0.9,1.3]\), indicated by the relatively larger AUC, smaller SD, DLE, and RMSE values. For simplicity, we employed a fixed value \(\lambda _1=2.1\) and \(\lambda _2=1.0\) for the experimental simulations.

Fig. 7
figure 7

Performance metrics under different values \(\lambda _1\) and \(\lambda _2\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Liu, K., Yu, Z. et al. EEG extended source imaging with structured sparsity and \(L_1\)-norm residual. Neural Comput & Applic 33, 8513–8524 (2021). https://doi.org/10.1007/s00521-020-05603-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-05603-1

Keywords

Navigation