Skip to main content
Log in

Network representation learning: a systematic literature review

  • Review
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Omnipresent network/graph data generally have the characteristics of nonlinearity, sparseness, dynamicity and heterogeneity, which bring numerous challenges to network related analysis problem. Recently, influenced by the excellent ability of deep learning to learn representation from data, representation learning for network data has gradually become a new research hotspot. Network representation learning aims to learn a project from given network data in the original topological space to low-dimensional vector space, while encoding a variety of structural and semantic information. The vector representation obtained could effectively support extensive tasks such as node classification, node clustering, link prediction and graph classification. In this survey, we comprehensively present an overview of a large number of network representation learning algorithms from two clear points of view of homogeneous network and heterogeneous network. The corresponding algorithms are deeply analyzed. Extensive applications are introduced in an all-round way, and related experiments are conducted to validate the typical algorithms. Finally, we point out five future promising directions for next research in terms of theory and application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. https://github.com/rusty1s/pytorch_geometric.

  2. https://github.com/thunlp/OpenNE.

  3. https://github.com/thunlp/OpenKE.

References

  1. Lynch C (2008) Big data: how do your data grow? Nature 455(7209):28–29. https://doi.org/10.1038/455028a

    Article  Google Scholar 

  2. Lazer D, Kennedy R, King G, Vespignani A (2014) The parable of Google Flu: traps in big data analysis. Science 343(6176):1203–1205. https://doi.org/10.1126/science.1248506

    Article  Google Scholar 

  3. Howe D, Costanzo M, Fey P, Gojobori T, Hannick L, Hide W, Hill DP, Kania R, Schaeffer M, Pierre SS, Twigger S, White O, Rhee SY (2008) Big data: the future of biocuration. Nature 455(7209):47–50. https://doi.org/10.1038/455047a

    Article  Google Scholar 

  4. Chang S, Han W, Tang J, Qi GJ, Aggarwal CC, Huang TS (2015) Heterogeneous network embedding via deep architectures. In: ACM SIGKDD international conference on knowledge discovery and data mining, pp 119–128. https://doi.org/10.1145/2783258.2783296

  5. Zitnik M, Agrawal M, Leskovec J (2018) Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34:i457–i466. https://doi.org/10.1093/bioinformatics/bty294

    Article  Google Scholar 

  6. Bengio Y, Courville A, Vincent P (2013) Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35(8):1798–1828. https://doi.org/10.1109/TPAMI.2013.50

    Article  Google Scholar 

  7. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444. https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  8. Dahl GE, Ranzato MA, Mohamed AR, Hinton G (2010) Phone recognition with the mean-covariance restricted Boltzmann Machine. In: Proceedings of the 23rd international conference on neural information processing systems, pp 469–477

  9. Mohamed A, Dahl GE, Hinton G (2012) Acoustic modeling using deep belief networks. IEEE Trans Audio Speech Lang Proc 20(1):14–22. https://doi.org/10.1109/tasl.2011.2109382

    Article  Google Scholar 

  10. Hinton G, Deng L, Yu D, Dahl GE, Mohamed A, Jaitly N, Senior A, Vanhoucke V, Nguyen P, Sainath TN (2012) Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process Mag 29(6):82–97. https://doi.org/10.1109/MSP.2012.2205597

    Article  Google Scholar 

  11. Farabet C, Couprie C, Najman L, LeCun Y (2013) Learning hierarchical features for scene labeling. IEEE Trans Pattern Anal Mach Intell 35(8):1915–1929. https://doi.org/10.1109/tpami.2012.231

    Article  Google Scholar 

  12. Tompson J, Jain A, Lecun Y, Bregler C (2014) Joint training of a convolutional network and a graphical model for human pose estimation. In: Proceedings of the 27th international conference on neural information processing systems, pp 1799–1807

  13. Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554. https://doi.org/10.1162/neco.2006.18.7.1527

    Article  MathSciNet  MATH  Google Scholar 

  14. Bengio Y, Lamblin P, Popovici D, Larochelle H (2006) Greedy layer-wise training of deep networks. In: Proceedings of the 19th international conference on neural information processing systems, pp 153–160

  15. Rifai S, Dauphin YN, Vincent P, Bengio Y, Muller X (2011) The manifold tangent classifier. In: Proceedings of the 24th international conference on neural information processing systems, pp 2294–2302

  16. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Annual conference on neural information processing systems, pp 1106–1114

  17. Schmidhuber J (2012) Multi-column deep neural networks for image classification. In: Proceedings of the 2012 IEEE conference on computer vision and pattern recognition. IEEE Computer Society, 2354694, pp 3642–3649. https://doi.org/10.1109/cvpr.2012.6248110

  18. Pan H, Wang B, Jiang H (2015) Deep learning for object saliency detection and image segmentation. arXiv

  19. Mikolov T, Sutskever I, Chen K, Corrado G, Dean J (2013) Distributed representations of words and phrases and their compositionality. In: Annual conference on neural information processing systems, pp 3111–3119

  20. Li Y, Xu L, Tian F, Jiang L, Zhong X, Chen E (2015) Word embedding revisited: a new representation learning and explicit matrix factorization perspective. In: International conference on artificial intelligence, pp 3650–3656

  21. Le QV, Mikolov T (2014) Distributed representations of sentences and documents. In: Proceedings of the 31th international conference on machine learning, pp 1188–1196

  22. Chien JT, Ku YC (2016) Bayesian recurrent neural network for language modeling. IEEE Trans Neural Netw Learn Syst 27(2):361–374. https://doi.org/10.1109/TNNLS.2015.2499302

    Article  MathSciNet  Google Scholar 

  23. Mikolov T, Corrado G, Chen K, Dean J, Mikolov T, Corrado G, Chen K, Dean J (2013) Efficient estimation of word representations in vector space. In: International conference on learning representations

  24. Liben-Nowell D, Kleinberg J (2007) The link-prediction problem for social networks. J Assoc Inf Sci Technol 58(7):1019–1031. https://doi.org/10.1002/asi.v58:7

    Article  Google Scholar 

  25. Ou M, Cui P, Pei J, Zhang Z, Zhu W (2016) Asymmetric transitivity preserving graph embedding. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp 1105–1114. https://doi.org/10.1145/2939672.2939751

  26. Wang D, Cui P, Zhu W (2016) Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp 1225–1234. https://doi.org/10.1145/2939672.2939753

  27. Grover A, Leskovec J (2016) node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp 855–864. https://doi.org/10.1145/2939672.2939754

  28. Tu C, Liu H, Liu Z, Sun M (2017) CANE: context-aware network embedding for relation modeling. In: Proceedings of the 55th annual meeting of the association for computational linguistics, pp 1722–1731. https://doi.org/10.18653/v1/p17-1158

  29. Zhou C, Liu Y, Liu X, Liu Z, Gao J (2017) Scalable graph embedding for asymmetric proximity. In: Proceedings of the 31st AAAI conference on artificial intelligence, pp 2942–2948

  30. Ribeiro LFR, Saverese PHP, Figueiredo DR (2017) struc2vec: learning node representations from structural identity. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, pp 385–394. https://doi.org/10.1145/3097983.3098061

  31. Yang Z, Cohen WW, Salakhutdinov R (2016) Revisiting semi-supervised learning with graph embeddings. In: Proceedings of the 33nd international conference on machine learning, pp 40–48

  32. Perozzi B, Al-Rfou R, Skiena S (2014) DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 701–710. https://doi.org/10.1145/2623330.2623732

  33. Tang J, Qu M, Wang M, Zhang M, Yan J, Mei Q (2015) LINE: large-scale information network embedding. In: Proceedings of the 24th international conference on world wide web, pp 1067–1077. https://doi.org/10.1145/2736277.2741093

  34. Cao S, Lu W, Xu Q (2015) GraRep: learning graph representations with global structural information. In: Proceedings of the 24th ACM international conference on information and knowledge management, pp 891–900. https://doi.org/10.1145/2806416.2806512

  35. Yang C, Liu Z, Zhao D, Sun M, Chang EY (2015) Network representation learning with rich text information. In: Proceedings of the twenty-fourth international joint conference on artificial intelligence, pp 2111–2117

  36. Tu C, Zhang W, Liu Z, Sun M (2016) Max-margin deepwalk: discriminative learning of network representation. In: Proceedings of the twenty-fifth international joint conference on artificial intelligence, pp 3889–3895

  37. Li J, Zhu J, Zhang B (2016) Discriminative deep random walk for network classification. In: Proceedings of the 54th annual meeting of the association for computational linguistics, pp 1004–1013

  38. Pan S, Wu J, Zhu X, Zhang C, Wang Y (2016) Tri-party deep network representation. In: Proceedings of the twenty-fifth international joint conference on artificial intelligence, pp 1895–1901

  39. Wang X, Cui P, Wang J, Pei J, Zhu W, Yang S (2017) Community preserving network embedding. In: Proceedings of the 31st AAAI conference on artificial intelligence, pp 203–209

  40. Huang X, Li J, Hu X (2017) Label informed attributed network embedding. In: Proceedings of the tenth ACM international conference on web search and data mining, pp 731–739. https://doi.org/10.1145/3018661.3018667

  41. Li B, Pi D (2019) Learning deep neural networks for node classification. Expert Syst Appl 137:324–334. https://doi.org/10.1016/j.eswa.2019.07.006

    Article  Google Scholar 

  42. Chen J, Zhang Q, Huang X (2016) Incorporate group information to enhance network embedding. In: Proceedings of the 25th ACM international conference on information and knowledge management, pp 1901–1904. https://doi.org/10.1145/2983323.2983869

  43. Cao S, Lu W, Xu Q (2016) Deep neural networks for learning graph representations. In: Proceedings of the 30th AAAI conference on artificial intelligence, pp 1145–1152

  44. Cavallari S, Zheng VW, Cai H, Chang CC, Cambria E (2017) Learning community embedding with community detection and node embedding on graphs. In: ACM on conference on information and knowledge management, pp 377–386. https://doi.org/10.1145/3132847.3132925

  45. Yang C, Liu M, Wang Z, Liu L, Han J (2017) Graph clustering with dynamic embedding. arXiv

  46. Yan S, Xu D, Zhang B, Zhang HJ, Yang Q, Lin S (2007) Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40–51. https://doi.org/10.1109/TPAMI.2007.12

    Article  Google Scholar 

  47. Tenenbaum JB, Silva VD, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–2323. https://doi.org/10.1126/science.290.5500.2319

    Article  Google Scholar 

  48. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326. https://doi.org/10.1126/science.290.5500.2323

    Article  Google Scholar 

  49. Belkin M, Niyogi P (2003) Laplacian Eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396. https://doi.org/10.1162/089976603321780317

    Article  MATH  Google Scholar 

  50. Vural E, Guillemot C (2016) Out-of-sample generalizations for supervised manifold learning for classification. IEEE Trans Image Process 25(3):1410–1424. https://doi.org/10.1109/TIP.2016.2520368

    Article  MathSciNet  MATH  Google Scholar 

  51. Hong D, Yokoya N, Zhu XX (2017) Learning a robust local manifold representation for hyperspectral dimensionality reduction. IEEE J Sel Top Appl Earth Obs Remote Sens 10(6):2960–2975. https://doi.org/10.1109/JSTARS.2017.2682189

    Article  Google Scholar 

  52. Wang W, Yan Y, Nie F, Yan S, Sebe N (2018) Flexible manifold learning with optimal graph for image and video representation. IEEE Trans Image Process 27(6):2664–2675. https://doi.org/10.1109/TIP.2018.2810515

    Article  MathSciNet  MATH  Google Scholar 

  53. Cui P, Wang X, Pei J, Zhu W (2019) A survey on network embedding. IEEE Trans Knowl Data Eng 31(5):833–852. https://doi.org/10.1109/TKDE.2018.2849727

    Article  Google Scholar 

  54. Moyano LG (2017) Learning network representations. Eur Phys J Spec Top 226(3):499–518. https://doi.org/10.1140/epjst/e2016-60266-2

    Article  MathSciNet  Google Scholar 

  55. Goyal P, Ferrara E (2018) Graph embedding techniques, applications, and performance: a survey. Knowl Based Syst 158:78–94. https://doi.org/10.1016/j.knosys.2018.03.022

    Article  Google Scholar 

  56. Cai H, Zheng VW, Chang CC (2018) A comprehensive survey of graph embedding: problems, techniques and applications. IEEE Trans Knowl Data Eng 30:1616–1637. https://doi.org/10.1109/TKDE.2018.2807452

    Article  Google Scholar 

  57. Hamilton WL, Ying R, Leskovec J (2017) Representation learning on graphs: methods and applications. IEEE Eng Bull 40:52–74

    Google Scholar 

  58. Keikha MM, Rahgozar M, Asadpour M (2018) Community aware random walk for network embedding. Knowl Based Syst 148:47–54. https://doi.org/10.1016/j.knosys.2018.02.028

    Article  Google Scholar 

  59. Zhang Y, Shi Z, Feng D, Zhan X-X (2019) Degree-biased random walk for large-scale network embedding. Future Gener Comput Syst 100:198–209. https://doi.org/10.1016/j.future.2019.05.033

    Article  Google Scholar 

  60. Kipf TN, Welling M (2017) Semi-supervised classification with graph convolutional networks. In: International conference on learning representations

  61. Zhuang C, Ma Q (2018) Dual graph convolutional networks for graph-based semi-supervised classification. In: International world wide web conferences, pp 499–508. https://doi.org/10.1145/3178876.3186116

  62. Gao H, Wang Z, Ji S (2018) Large-scale learnable graph convolutional networks. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery and data mining, pp 1416–1424. https://doi.org/10.1145/3219819.3219947

  63. Dai Q, Li Q, Tang J, Wang D (2018) Adversarial network embedding. In: Thirty-second AAAI conference on artificial intelligence

  64. Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y (2018) Graph attention networks. In: International conference on learning representations

  65. Wang H, Wang J, Wang J, Zhao M, Zhang W, Zhang F, Xie X, Guo M (2018) GraphGAN: graph representation learning with generative adversarial nets. In: Thirty-second AAAI conference on artificial intelligence

  66. Pan S, Hu R, Long G, Jiang J, Yao L, Zhang C (2018) Adversarially regularized graph autoencoder for graph embedding. In: Proceedings of the twenty-seventh international joint conference on artificial intelligence, pp 2609–2615. https://doi.org/10.24963/ijcai.2018/362

  67. Hu F, Zhu Y, Wu S, Wang L, Tan T (2019) Hierarchical graph convolutional networks for semi-supervised node classification. In: Proceedings of the twenty-eighth international joint conference on artificial intelligence. https://doi.org/10.24963/ijcai.2019/630

  68. Gao H, Pei J, Huang H (2019) ProGAN: network embedding via proximity generative adversarial network. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery and data mining, pp 1308–1316. https://doi.org/10.1145/3292500.3330866

  69. Fu S, Liu W, Tao D, Zhou Y, Nie L (2020) HesGCN: Hessian graph convolutional networks for semi-supervised classification. Inf Sci 514:484–498. https://doi.org/10.1016/j.ins.2019.11.019

    Article  MathSciNet  Google Scholar 

  70. Debnath AK, Compadre RLLD, Debnath G, Shusterman AJ, Hansch C (1991) Structure–activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. Correlation with molecular orbital energies and hydrophobicity. J Med Chem 34(2):786–797. https://doi.org/10.1021/jm00106a046

    Article  Google Scholar 

  71. Toivonen H, Srinivasan A, King RD, Kramer S, Helma C (2003) Statistical evaluation of the predictive toxicology challenge 2000–2001. Bioinformatics 19(10):1183–1193. https://doi.org/10.1093/bioinformatics/btg130

    Article  Google Scholar 

  72. Xinyi Z, Chen L (2019) Capsule graph neural network. In: International conference on learning representations

  73. Borgwardt KM, Ong CS, Schönauer S, Vishwanathan SVN, Smola AJ, Kriegel H-P (2005) Protein function prediction via graph kernels. Bioinformatics 21(1):47–56. https://doi.org/10.1093/bioinformatics/bti1007

    Article  Google Scholar 

  74. Wale N, Karypis G (2008) Comparison of descriptor spaces for chemical compound retrieval and classification. Knowl Inf Syst 14(3):347–375. https://doi.org/10.1109/ICDM.2006.39

    Article  Google Scholar 

  75. Leskovec J, Kleinberg JM, Faloutsos C (2005) Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proceedings of the eleventh ACM SIGKDD international conference on knowledge discovery and data mining, pp 177–187. https://doi.org/10.1145/1081870.1081893

  76. Yanardag P, Vishwanathan SVN (2015) Deep graph kernels. In: ACM SIGKDD international conference on knowledge discovery and data mining, pp 1365–1374. https://doi.org/10.1145/2783258.2783417

  77. Fouss F, Pirotte A, Renders JM, Saerens M (2007) Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. IEEE Trans Knowl Data Eng 19(3):355–369. https://doi.org/10.1109/TKDE.2007.46

    Article  Google Scholar 

  78. Mnih A, Hinton G (2009) A scalable hierarchical distributed language model. In: Proceedings of the 21st international conference on neural information processing systems, pp 1081–1088

  79. Feng R, Yang Y, Hu W, Wu F, Zhuang Y (2018) Representation learning for scale-free networks. In: Thirty-second AAAI conference on artificial intelligence

  80. Chen H, Perozzi B, Hu Y, Skiena S (2018) HARP: hierarchical representation learning for networks. In: Thirty-second AAAI conference on artificial intelligence

  81. Feng N, Recht B, Re C, Wright SJ (2011) Hogwild: a lock-free approach to parallelizing stochastic gradient descent. In: Proceedings of the 24th international conference on neural information processing systems, pp 693–701

  82. Bottou L (1998) Online algorithms and stochastic approximations. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  83. Hochstenbach ME (2009) A Jacobi–Davidson type method for the generalized singular value problem. Linear Algebra Appl 431(3–4):471–487. https://doi.org/10.1016/j.laa.2009.03.003

    Article  MathSciNet  MATH  Google Scholar 

  84. Weimer M, Karatzoglou A, Smola A (2008) Improving maximum margin matrix factorization. Mach Learn 72(3):263–276. https://doi.org/10.1007/978-3-540-87479-9_12

    Article  Google Scholar 

  85. Lin CJ (2007) Projected gradient methods for nonnegative matrix factorization. Neural Comput 19(10):2756–2779. https://doi.org/10.1162/neco.2007.19.10.2756

    Article  MathSciNet  MATH  Google Scholar 

  86. Guillamet D, Vitrià J, Schiele B (2003) Introducing a weighted non-negative matrix factorization for image classification. Pattern Recognit Lett 24(14):2447–2454. https://doi.org/10.1016/S0167-8655(03)00089-8

    Article  MATH  Google Scholar 

  87. Liu W, Zheng N (2004) Non-negative matrix factorization based methods for object recognition. Pattern Recognit Lett 25(8):893–897. https://doi.org/10.1016/j.patrec.2004.02.002

    Article  Google Scholar 

  88. Lee DD, Seung HS (2000) Algorithms for non-negative matrix factorization. In: Proceedings of the 13th international conference on neural information processing systems, pp 535–541

  89. Klema VC, Laub AJ (1980) The singular value decomposition: its computation and some applications. IEEE Trans Autom Control 25(2):164–176. https://doi.org/10.1109/TAC.1980.1102314

    Article  MathSciNet  MATH  Google Scholar 

  90. Mnih V, Heess N, Graves A, Kavukcuoglu K (2014) Recurrent models of visual attention. In: Proceedings of the 27th international conference on neural information processing systems, pp 2204–2212

  91. Donahue J, Krähenbühl P, Darrell T (2017) Adversarial feature learning. In: International conference on learning representations

  92. Radford A, Metz L, Chintala S (2016) Unsupervised representation learning with deep convolutional generative adversarial networks. In: International conference on learning representations

  93. Yu L, Zhang W, Wang J, Yu Y (2017) SeqGAN: sequence generative adversarial nets with policy gradient. In: Thirty-first AAAI conference on artificial intelligence

  94. Li J, Monroe W, Shi T, Jean S, Ritter A, Jurafsky D (2017) Adversarial learning for neural dialogue generation. In: Proceedings of the 2017 conference on empirical methods in natural language processing, pp 2157–2169

  95. Wang J, Yu L, Zhang W, Gong Y, Xu Y, Wang B, Zhang P, Zhang D (2017) IRGAN: a minimax game for unifying generative and discriminative information retrieval models. In: International ACM SIGIR conference on research and development in information retrieval, pp 515–524. https://doi.org/10.1145/3077136.3080786

  96. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: International conference on neural information processing systems, pp 2672–2680

  97. Bullinaria JA, Levy JP (2007) Extracting semantic representations from word co-occurrence statistics: a computational study. Behav Res Methods 39(3):510–526. https://doi.org/10.3758/BF03193020

    Article  Google Scholar 

  98. Kipf TN, Welling M (2016) Variational graph auto-encoders. In: NIPS workshop on Bayesian deep learning

  99. Wang C, Pan S, Hu R, Long G, Jiang J, Zhang C (2019) Attributed graph clustering: a deep attentional embedding approach. In: Proceedings of the twenty-eighth international joint conference on artificial intelligence, pp 3670–3676. https://doi.org/10.24963/ijcai.2019/509

  100. Shi H, Fan H, Kwok JT (2020) Effective decoding in graph auto-encoder using triadic closure. In: Proceedings of the 34th AAAI conference on artificial intelligence

  101. Tolstikhin I, Bousquet O, Gelly S, Schoelkopf B (2018) Wasserstein auto-encoders. In: International conference on learning representations

  102. Donnat C, Zitnik M, Hallac D, Leskovec J (2018) Learning structural node embeddings via diffusion wavelets. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery and data mining, pp 1320–1329. https://doi.org/10.1145/3219819.3220025

  103. Shuman DI, Narang SK, Frossard P, Ortega A, Vandergheynst P (2013) The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process Mag 30(3):83–98. https://doi.org/10.1109/MSP.2012.2235192

    Article  Google Scholar 

  104. Narayanan A, Chandramohan M, Chen L, Liu Y, Saminathan S (2016) subgraph2vec: learning distributed representations of rooted sub-graphs from large graphs. arXiv

  105. Shervashidze N, Schweitzer P, Leeuwen EJ, Mehlhorn K, Borgwardt KM (2011) Weisfeiler–Lehman graph kernels. J Mach Learn Res 12(3):2539–2561

    MathSciNet  MATH  Google Scholar 

  106. Vishwanathan SVN, Schraudolph NN, Kondor R, Borgwardt KM (2010) Graph kernels. J Mach Learn Res 11:1201–1242

    MathSciNet  MATH  Google Scholar 

  107. Shervashidze N, Vishwanathan SVN, Petri TH, Mehlhorn K, Borgwardt KM (2009) Efficient graphlet kernels for large graph comparison. In: Proceedings of the twelfth international conference on artificial intelligence and statistics, pp 488–495

  108. Shervashidze N, Borgwardt KM (2009) Fast subtree kernels on graphs. In: International conference on neural information processing systems, pp 1660–1668

  109. Borgwardt KM, Kriegel HP (2005) Shortest-path kernels on graphs. In: IEEE International conference on data mining, pp 74–81. https://doi.org/10.1109/icdm.2005.132

  110. Niepert M, Ahmed M, Kutzkov K (2016) Learning convolutional neural networks for graphs. In: Proceedings of the 33nd international conference on machine learning, pp 2014–2023

  111. Luo Z, Liu L, Yin J, Li Y, Wu Z (2017) Deep learning of graphs with Ngram convolutional neural networks. IEEE Trans Knowl Data Eng 29(10):2125–2139. https://doi.org/10.1109/TKDE.2017.2720734

    Article  Google Scholar 

  112. Mckay BD, Piperno A (2014) Practical graph isomorphism, II. J Symb Comput 60:94–112

    Article  MathSciNet  Google Scholar 

  113. Zhang M, Cui Z, Neumann M, Yixin C (2018) An end-to-end deep learning architecture for graph classification. In: Proceedings of the thirty-second AAAI conference on artificial intelligence, pp 4438–4445

  114. Bruna J, Zaremba W, Szlam A, Lecun Y (2014) Spectral networks and locally connected networks on graphs. In: International conference on learning representations

  115. Defferrard M, Bresson X, Vandergheynst P (2016) Convolutional neural networks on graphs with fast localized spectral filtering. In: The 30th conference on neural information processing systems

  116. Ying R, You J, Morris C, Ren X, Hamilton W, Leskovec J (2018) Hierarchical graph representation learning with differentiable pooling. In: Proceedings of the 32nd international conference on neural information processing systems, pp 4805–4815

  117. Chen F, Pan S, Jiang J, Huo H, Long G (2019) DAGCN: dual attention graph convolutional networks. In: International joint conference on neural networks, pp 1–8. https://doi.org/10.1109/ijcnn.2019.8851698

  118. Lee JB, Rossi RA, Kong X (2018) Graph classification using structural attention. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery and data mining, pp 1666–1674. https://doi.org/10.1145/3219819.3219980

  119. Sabour S, Frosst N, Hinton GE (2017) Dynamic routing between capsules. In: Proceedings of the 31st international conference on neural information processing systems, pp 3859–3869

  120. Zhu D, Cui P, Zhang Z, Pei J, Zhu W (2018) High-order proximity preserved embedding for dynamic networks. IEEE Trans Knowl Data Eng 30:2134–2144. https://doi.org/10.1109/TKDE.2018.2822283

    Article  Google Scholar 

  121. Zhou L, Yang Y, Ren X, Wu F, Zhuang Y (2018) Dynamic network embedding by modeling triadic closure process. In: Thirty-second AAAI conference on artificial intelligence, vol 5, pp 393–406

  122. Manessi F, Rozza A, Manzo M (2020) Dynamic graph convolutional networks. Pattern Recognit 97:107000. https://doi.org/10.1016/j.patcog.2019.107000

    Article  Google Scholar 

  123. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  124. Bordes A, Usunier N, Garcia-Duran A, Weston J, Yakhnenko O (2013) Translating embeddings for modeling multi-relational data. In: International conference on neural information processing systems, pp 2787–2795

  125. Bian J, Chang Y, Fu Y, Chen WY (2012) Learning to blend vitality rankings from heterogeneous social networks. Neurocomputing 97(1):390–397. https://doi.org/10.1016/j.neucom.2012.06.024

    Article  Google Scholar 

  126. Shen Z, Ma KL, Eliassi-Rad T (2006) Visual analysis of large heterogeneous social networks by semantic and structural abstraction. IEEE Trans Vis Comput Graph 12(6):1427–1439. https://doi.org/10.1109/TVCG.2006.107

    Article  Google Scholar 

  127. Sun Y, Norick B, Han J, Yan X, Yu PS, Yu X (2012) Integrating meta-path selection with user-guided object clustering in heterogeneous information networks. In: The 18th ACM SIGKDD international conference on knowledge discovery and data mining, pp 1348–1356. https://doi.org/10.1145/2339530.2339738

  128. Shi C, Li Y, Zhang J, Sun Y, Yu PS (2017) A survey of heterogeneous information network analysis. IEEE Trans Knowl Data Eng 29(1):17–37. https://doi.org/10.1109/TKDE.2016.2598561

    Article  Google Scholar 

  129. Sun Y, Han J (2012) Mining heterogeneous information networks: a structural analysis approach. ACM SIGKDD Explor Newsl 14(2):20–28. https://doi.org/10.1145/2481244.2481248

    Article  Google Scholar 

  130. Jacob Y, Denoyer L, Gallinari P (2014) Learning latent representations of nodes for classifying in heterogeneous social networks. In: Proceedings of the 7th ACM international conference on web search and data mining, New York, NY, USA. ACM, 2556225, pp 373–382. https://doi.org/10.1145/2556195.2556225

  131. Nickel M, Tresp V, Kriegel HP (2011) A three-way model for collective learning on multi-relational data. In: International conference on machine learning, pp 809-816

  132. Bordes A, Weston J, Collobert R, Bengio Y (2012) Learning structured embeddings of knowledge bases. In: AAAI Conference on artificial intelligence

  133. Socher R, Chen D, Manning CD, Ng AY (2013) Reasoning with neural tensor networks for knowledge base completion. In: International conference on neural information processing systems, pp 926–934

  134. Wang Z, Zhang J, Feng J, Chen Z (2014) Knowledge graph embedding by translating on hyperplanes. In: Twenty-eighth AAAI conference on artificial intelligence, pp 1112–1119

  135. Lin Y, Liu Z, Sun M, Liu Y, Zhu X (2015) Learning entity and relation embeddings for knowledge graph completion. In: Twenty-ninth AAAI conference on artificial intelligence, pp 2181–2187

  136. Yang B, Yih W, He X, Gao J, Deng L (2015) Embedding entities and relations for learning and inference in knowledge bases. In: International conference on learning representations

  137. Ji G, He S, Xu L, Liu K, Zhao J (2015) Knowledge graph embedding via dynamic mapping matrix. In: Meeting of the association for computational linguistics and the international joint conference on natural language processing, pp 687–696

  138. Jia Y, Wang Y, Lin H, Jin X, Cheng X (2016) Locally adaptive translation for knowledge graph embedding. In: Proceedings of the thirtieth conference on artificial intelligence, pp 992–998

  139. Ji G, Liu K, He S, Zhao J (2016) Knowledge graph completion with adaptive sparse transfer matrix. In: Thirtieth AAAI conference on artificial intelligence, pp 985–991

  140. Xie R, Liu Z, Sun M (2016) Representation learning of knowledge graphs with hierarchical types. In: International joint conference on artificial intelligence, pp 2965–2971

  141. Nickel M, Rosasco L, Poggio T (2016) Holographic embeddings of knowledge graphs. In: Thirtieth AAAI conference on artificial intelligence, pp 1955–1961

  142. Ruobing X, Zhiyuan L, Jia J, Huanbo L, Maosong S (2016) Representation learning of knowledge graphs with entity descriptions. In: Proceedings of the thirtieth AAAI conference on artificial intelligence

  143. Xiao H, Huang M, Zhu X (2016) From one point to a manifold: knowledge graph embedding for precise link prediction. In: International joint conference on artificial intelligence

  144. Welbl J, Riedel S, Bouchard G (2016) Complex embeddings for simple link prediction. In: International conference on machine learning, pp 2071–2080

  145. Chen M, Tian Y, Yang M, Zaniolo C (2017) Multilingual knowledge graph embeddings for cross-lingual knowledge alignment. In: International joint conference on artificial intelligence

  146. Liu H, Wu Y, Yang Y (2017) Analogical inference for multi-relational embeddings. In: International conference on machine learning, pp 2168–2178

  147. Ebisu T, Ichise R (2018) TorusE: knowledge graph embedding on a Lie group. In: Thirty-second AAAI conference on artificial intelligence (AAAI-18)

  148. Dettmers T, Minervini P, Stenetorp P, Riedel S (2018) Convolutional 2D knowledge graph embeddings. In: Thirty-second AAAI conference on artificial intelligence, pp 1811–1818

  149. Guo S, Wang Q, Wang L, Wang B, Guo L (2018) Knowledge graph embedding with iterative guidance from soft rules. In: Thirty-second AAAI conference on artificial intelligence (AAAI-18)

  150. Auer S, Bizer C, Kobilarov G, Lehmann J, Cyganiak R, Ives ZG (2007) DBpedia: a nucleus for a web of open data. In: International semantic web conference, pp 11–15

  151. Bollacker K, Evans C, Paritosh P, Sturge T, Taylor J (2008) Freebase: a collaboratively created graph database for structuring human knowledge. In: SIGMOD conference, pp 1247–1250. https://doi.org/10.1145/1376616.1376746

  152. Chen T, Sun Y (2017) Task-guided and path-augmented heterogeneous network embedding for author identification. In: Web search and data mining, pp 295–304. https://doi.org/10.1145/3018661.3018735

  153. Shi Y, Gui H, Zhu Q, Kaplan L, Han J (2018) AspEm: embedding learning by aspects in heterogeneous information networks. In: Proceedings of the 2018 SIAM international conference on data mining. https://doi.org/10.1137/1.9781611975321.16

  154. Fu TY, Lee WC, Lei Z (2017) HIN2Vec: explore meta-paths in heterogeneous information networks for representation learning. In: ACM International conference on information and knowledge management, pp 1797–1806. https://doi.org/10.1145/3132847.3132953

  155. Harper FM, Konstan JA (2016) The MovieLens datasets: history and context. ACM Trans Interact Intell Syst 5(4):19. https://doi.org/10.1145/2827872

    Article  Google Scholar 

  156. Tu K, Cui P, Wang X, Wang F, Zhu W (2018) Structural deep embedding for hyper-networks. In: Thirty-second AAAI conference on artificial intelligence (AAAI-2018)

  157. Zheng VW, Cao B, Zheng Y, Xie X, Yang Q (2010) Collaborative filtering meets mobile recommendation: a user-centered approach. In: Twenty-fourth AAAI conference on artificial intelligence

  158. Schlichtkrull M, Kipf TN, Bloem P, Van Den Berg R, Titov I, Welling M (2018) Modeling relational data with graph convolutional networks. In: European semantic web conference. Springer, pp 593–607. https://doi.org/10.1007/978-3-319-93417-4_38

  159. Nathani D, Chauhan J, Sharma C, Kaul M (2019) Learning attention-based embeddings for relation prediction in knowledge graphs. In: Proceedings of the 57th conference of the association for computational linguistics, pp 4710–4723. https://doi.org/10.18653/v1/p19-1466

  160. Tang J, Qu M, Mei Q (2015) PTE: predictive text embedding through large-scale heterogeneous text networks. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining, pp 1165–1174. https://doi.org/10.1145/2783258.2783307

  161. Gui H, Liu J, Tao F, Jiang M, Norick B, Han J (2016) Large-scale embedding learning in heterogeneous event data. In: IEEE International conference on data mining, pp 907–912. https://doi.org/10.1109/icdm.2016.0111

  162. Gui H, Liu J, Tao F, Jiang M, Norick B, Kaplan L, Han J (2017) Embedding learning with events in heterogeneous information networks. IEEE Trans Knowl Data Eng 29(11):2428–2441. https://doi.org/10.1109/TKDE.2017.2733530

    Article  Google Scholar 

  163. Berge C (1989) Hypergraphs: combinatorics of finite sets. Elsevier, Amsterdam

    MATH  Google Scholar 

  164. Silva JG, Willett R (2009) Hypergraph-based anomaly detection of high-dimensional co-occurrences. IEEE Trans Pattern Anal Mach Intell 31(3):563–569. https://doi.org/10.1109/TPAMI.2008.232

    Article  Google Scholar 

  165. Zhang C, Song D, Huang C, Swami A, Chawla NV (2019) Heterogeneous graph neural network. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery and data mining, pp 793–803. https://doi.org/10.1145/3292500.3330961

  166. Wang X, Ji H, Shi C, Wang B, Ye Y, Cui P, Yu PS (2019) Heterogeneous graph attention network. In: The world wide web conference, pp 2022–2032. https://doi.org/10.1145/3308558.3313562

  167. Zhu J, Zhang J, He L, Wu Q, Zhou B, Zhang C, Yu PS (2017) Broad learning based multi-source collaborative recommendation. In: ACM International conference on information and knowledge management, pp 1409–1418. https://doi.org/10.1145/3132847.3132976

  168. Zhang J, Xia C, Zhang C, Cui L, Fu Y, Yu PS (2017) BL-MNE: emerging heterogeneous social network embedding through broad learning with aligned autoencoder. In: International conference on data mining, pp 605–614. https://doi.org/10.1109/icdm.2017.70

  169. Sun Y, Han J (2012) Mining heterogeneous information networks: principles and methodologies. Morgan & Claypool Publishers, San Rafael

    Google Scholar 

  170. Sun Y, Han J, Yan X, Yu PS, Wu T (2011) PathSim: meta path-based top-k similarity search in heterogeneous information networks. In: Proceedings of the VLDB endowment, vol 11, pp 992–1003

  171. Dong Y, Chawla NV, Swami A (2017) metapath2vec: scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, Halifax, NS, Canada. ACM, 3098036, pp 135–144. https://doi.org/10.1145/3097983.3098036

  172. Zhang D, Yin J, Zhu X, Zhang C (2018) MetaGraph2Vec: complex semantic path augmented heterogeneous network embedding. In: Pacific-Asia conference on knowledge discovery and data mining. Springer, pp 196–208. https://doi.org/10.1007/978-3-319-93037-4_16

  173. Shi C, Hu B, Zhao WX, Philip SY (2019) Heterogeneous information network embedding for recommendation. IEEE Trans Knowl Data Eng 31(2):357–370. https://doi.org/10.1109/TKDE.2018.2833443

    Article  Google Scholar 

  174. Zhang H, Wang S, Xu X, Chow TW, Wu QJ (2018) Tree2Vector: learning a vectorial representation for tree-structured data. IEEE Trans Neural Netw Learn Syst 99:1–15. https://doi.org/10.1109/TNNLS.2018.2797060

    Article  MathSciNet  Google Scholar 

  175. Lu L, Zhang H (2015) A tree-structured representation for book author and its recommendation using multilayer SOM. In: 2015 International joint conference on neural networks (IJCNN). IEEE, pp 1–8. https://doi.org/10.1109/ijcnn.2015.7280530

  176. Kazienko P, Kajdanowicz T (2012) Label-dependent node classification in the network. Neurocomputing 75(1):199–209. https://doi.org/10.1016/j.neucom.2011.04.047

    Article  Google Scholar 

  177. Sun Y, Yuan Y, Wang G (2015) An on-line sequential learning method in social networks for node classification. Neurocomputing 149:207–214. https://doi.org/10.1016/j.neucom.2014.04.074

    Article  Google Scholar 

  178. Bojchevski A, Günnemann S (2018) Deep Gaussian embedding of graphs: unsupervised inductive learning via ranking. In: International conference on learning representations

  179. Fan R-E, Chang K-W, Hsieh C-J, Wang X-R, Lin C-J (2008) LIBLINEAR: a library for large linear classification. J Mach Learn Res 9:1871–1874

    MATH  Google Scholar 

  180. Peng W, Baowen X, Yurong W, Xiaoyu Z (2015) Link prediction in social networks: the state-of-the-art. Sci China Inf Sci 58(1):1–38. https://doi.org/10.1007/s11432-014-5237-y

    Article  Google Scholar 

  181. Cannistraci CV, Alanis-Lobato G, Ravasi T (2013) Minimum curvilinearity to enhance topological prediction of protein interactions by network embedding. Bioinformatics 29(13):199–209. https://doi.org/10.1093/bioinformatics/btt208

    Article  Google Scholar 

  182. Ma J, Cui P, Zhu W (2018) DepthLGP: learning embeddings of out-of-sample nodes in dynamic networks. In: Thirty-second AAAI conference on artificial intelligence

  183. Fout A, Byrd J, Shariat B, Benhur A (2017) Protein interface prediction using graph convolutional networks. In: Proceedings of the 31st international conference on neural information processing systems, pp 6533–6542

  184. Godfrey P, Gryz J, Lasek P (2016) Interactive visualization of large datasets. IEEE Trans Knowl Data Eng 28(8):2142–2157. https://doi.org/10.1109/TKDE.2016.2557324

    Article  Google Scholar 

  185. Maaten LVD, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9(2605):2579–2605

    MATH  Google Scholar 

  186. Tang J, Liu J, Zhang M, Mei Q (2016) Visualizing large-scale and high-dimensional Data. In: International conference on world wide web, vol 7, pp 287–297. https://doi.org/10.1145/2872427.2883041

  187. Bobadilla J, Ortega F, Hernando A (2013) Recommender systems survey. Knowl Based Syst 46(1):109–132. https://doi.org/10.1016/j.knosys.2013.03.012

    Article  Google Scholar 

  188. Chumki B, Haym H, Cohen W (1998) Recommendation as classification: using social and content-based information in recommendation. In: Proceedings of the fifteenth national conference on artificial intelligence and tenth innovative applications of artificial intelligence conference, pp 714–720

  189. Sarwar B, Karypis G, Konstan J, Riedl J (2001) Item-based collaborative filtering recommendation algorithms. In: International conference on world wide web, pp 285–295

  190. Kitsak M, Gallos LK, Havlin S, Liljeros F, Muchnik L, Stanley HE, Makse HA (2010) Identification of influential spreaders in complex networks. Nat Phys 6(11):888–893. https://doi.org/10.1038/nphys1746

    Article  Google Scholar 

  191. Schietgat L, Ramon J, Bruynooghe M (2013) A polynomial-time maximum common subgraph algorithm for outerplanar graphs and its application to chemoinformatics. Ann Math Artif Intell 69(4):343–376. https://doi.org/10.1007/s10472-013-9335-0

    Article  MathSciNet  MATH  Google Scholar 

  192. Deshpande M, Kuramochi M, Karypis G (2005) Frequent sub-structure-based approaches for classifying chemical compounds. In: IEEE International conference on data mining, pp 35–42. https://doi.org/10.1109/tkde.2005.127

  193. Cheng H, Lo D, Zhou Y, Wang X, Yan X (2009) Identifying bug signatures using discriminative graph mining. In: Proceedings of the eighteenth international symposium on software testing and analysis, pp 141–152. https://doi.org/10.1145/1572272.1572290

  194. Zhu X, Zhang C, Pan S, Yu PS (2013) Graph stream classification using labeled and unlabeled graphs. In: IEEE International conference on data engineering, pp 398–409. https://doi.org/10.1109/icde.2013.6544842

  195. Dai H, Dai B, Song L (2016) Discriminative embeddings of latent variable models for structured data. In: International conference on machine learning, pp 2702–2711

  196. You J, Liu B, Ying R, Pande V, Leskovec J (2018) Graph convolutional policy network for goal-directed molecular graph generation. In: Thirty-second conference on neural information processing systems

  197. Wang Q, Mao Z, Wang B, Guo L (2017) Knowledge graph embedding: a survey of approaches and applications. IEEE Trans Knowl Data Eng 29(12):2724–2743. https://doi.org/10.1109/TKDE.2017.2754499

    Article  Google Scholar 

  198. Dai H, Khalil EB, Zhang Y, Dilkina B, Song L (2017) Learning combinatorial optimization algorithms over graphs. In: Proceedings of the 31st international conference on neural information processing systems, pp 6351–6361

  199. Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. MIT Press, Cambridge

    MATH  Google Scholar 

  200. Sun M, Zhao S, Gilvary C, Elemento O, Zhou J, Wang F (2019) Graph convolutional networks for computational drug development and discovery. Brief Bioinform. https://doi.org/10.1093/bib/bbz042

    Article  Google Scholar 

  201. Guo K, Hu Y, Qian Z, Liu H, Zhang K, Sun Y, Gao J, Yin B (2020) Optimized graph convolution recurrent neural network for traffic prediction. IEEE Trans Intell Transp Syst. https://doi.org/10.1109/TITS.2019.2963722

    Article  Google Scholar 

  202. Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. In: International conference on learning representations

  203. Ahmed A, Shervashidze N, Narayanamurthy S, Josifovski V, Smola AJ (2013) Distributed large-scale natural graph factorization. In: International conference on world wide web, pp 37–48. https://doi.org/10.1145/2488388.2488393

  204. Neumann M, Garnett R, Bauckhage C, Kersting K (2016) Propagation kernels: efficient graph kernels from propagated information. Mach Learn 102(2):209–245. https://doi.org/10.1007/s10994-015-5517-9

    Article  MathSciNet  MATH  Google Scholar 

  205. Simonovsky M, Komodakis N (2017) Dynamic edge-conditioned filters in convolutional neural networks on graphs. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3693–3702. https://doi.org/10.1109/cvpr.2017.11

  206. Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods for online learning and stochastic optimization. J Mach Learn Res 12(7):257–269

    MathSciNet  MATH  Google Scholar 

  207. Bordes A, Usunier N, Garcia-Duran A, Weston J, Yakhnenko O (2013) Translating embeddings for modeling multi-relational data. In: Proceedings of the 26th international conference on neural information processing systems, pp 2787–2795

  208. Thomas JM, Muscoloni A, Ciucci S, Bianconi G, Cannistraci CV (2017) Machine learning meets complex networks via coalescent embedding in the hyperbolic space. Nat Commun 8(1):1615. https://doi.org/10.1038/s41467-017-01825-5

    Article  Google Scholar 

  209. Chamberlain BP, Clough J, Deisenroth MP (2017) Neural embeddings of graphs in hyperbolic space. arXiv

  210. Dai H, Li H, Tian T, Huang X, Wang L, Zhu J, Song L (2018) Adversarial attack on graph structured data. In: International conference on machine learning, pp 1123–1132. https://doi.org/10.1145/3219819.3220078

  211. Zügner D, Akbarnejad A, Günnemann S (2018) Adversarial attacks on neural networks for graph data. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery and data mining, London, UK. ACM, pp 2847–2856

  212. Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. In: International conference on learning representations

  213. Battaglia PW, Hamrick JB, Bapst V, Sanchez-Gonzalez A, Zambaldi V, Malinowski M, Tacchetti A, Raposo D, Santoro A, Faulkner R, Gulcehre C, Song F, Ballard A, Gilmer J, Dahl G, Vaswani A, Allen K, Nash C, Langston V, Dyer C, Heess N, Wierstra D, Kohli P, Botvinick M, Vinyals O, Li Y, Pascanu R (2018) Relational inductive biases, deep learning, and graph networks. arXiv

  214. Bareinboim E, Pearl J (2016) Causal inference and the data-fusion problem. Proc Natl Acad Sci 113(27):7345–7352. https://doi.org/10.1073/pnas.1510507113

    Article  Google Scholar 

  215. Cao B, He L, Xiaokai, Xing M, Yu PS, Klumpp H, Leow AD (2017) t-BNE: tensor-based brain network embedding. In: SIAM International conference on data mining, pp 189–197. https://doi.org/10.1137/1.9781611974973.22

  216. Ma G, Lu CT, He L, Yu PS, Ragin AB (2017) Multi-view graph embedding with hub detection for brain network analysis. In: IEEE International conference on data mining, pp 967–972. https://doi.org/10.1109/icdm.2017.123

  217. Camacho DM, Collins KM, Powers RK, Costello JC, Collins JJ (2018) Next-generation machine learning for biological networks. Cell 173(7):1581–1592. https://doi.org/10.1016/j.cell.2018.05.015

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (Grant Number: U1433116), and the Fundamental Research Funds for the Central Universities (Grant Number: NP2017208). Thanks are due to all developers and researchers providing open-source platform. Thanks are due to all the anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dechang Pi.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Pi, D. Network representation learning: a systematic literature review. Neural Comput & Applic 32, 16647–16679 (2020). https://doi.org/10.1007/s00521-020-04908-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-04908-5

Keywords

Navigation