Skip to main content

Advertisement

Log in

Electric fish optimization: a new heuristic algorithm inspired by electrolocation

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Swarm behaviors in nature have inspired the emergence of many heuristic optimization algorithms. They have attracted much attention, particularly for complex problems, owing to their characteristics of high dimensionality, nondifferentiability, and the like. A new heuristic algorithm is proposed in this study inspired by the prey location and communication behaviors of electric fish. Nocturnal electric fish have very poor eyesight and live in muddy, murky water, where visual senses are very limited. Therefore, they rely on their species-specific ability called electrolocation to perceive their environment. The active and passive electrolocation capability of such fish is believed to be a good candidate for balancing local and global search, and hence it is modeled in this study. A new heuristic called electric fish optimization (EFO) is introduced and compared with six well-known heuristics (simulated annealing, SA; vortex search, VS; genetic algorithm, GA; differential evolution, DE; particle swarm optimization, PSO; and artificial bee colony, ABC). In the experiments, 50 basic and 30 complex mathematical functions, 13 clustering problems, and five real-world design problems are used as the benchmark sets. The simulation results indicate that EFO is better than or very competitive with its competitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. https://wise.cs.hacettepe.edu.tr/projects/efo/.

References

  1. Akay B, Karaboga D (2012) Artificial bee colony algorithm for large-scale problems and engineering design optimization. J Intell Manuf 23(4):1001–1014. https://doi.org/10.1007/s10845-010-0393-4

    Article  Google Scholar 

  2. Aragon V, ES C, Coello CCA (2010) A modified version of a t cell algorithm for constrained optimization problems. Int J Numer Meth Eng 84(3):351–378. https://doi.org/10.1002/nme.2904

    Article  MATH  Google Scholar 

  3. Arora JS (1967) Introduction to optimum design, 1989. McGraw-Mill Book Company, New Yrok

    Google Scholar 

  4. Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169:1–12. https://doi.org/10.1016/j.compstruc.2016.03.001

    Article  Google Scholar 

  5. Awad N, Ali M, Liang J, Qu B, Suganthan P (2016) Problem definitions and evaluation criteria for the cec 2017 special session and competition on single objective real-parameter numerical optimization. Tech Rep

  6. Bandyopadhyay S, Maulik U (2002) Genetic clustering for automatic evolution of clusters and application to image classification. Pattern Recogn 35(6):1197–1208

    Article  Google Scholar 

  7. Barr RS, Golden BL, Kelly JP, Resende MGC, Stewart WR (1995) Designing and reporting on computational experiments with heuristic methods. J Heuristics 1(1):9–32. https://doi.org/10.1007/BF02430363

    Article  MATH  Google Scholar 

  8. Bernardino HS, Barbosa HJC, Lemonge ACC (2007) A hybrid genetic algorithm for constrained optimization problems in mechanical engineering. In: 2007 IEEE congress on evolutionary computation, pp 646–653. https://doi.org/10.1109/CEC.2007.4424532

  9. Bernardino HS, Barbosa HJC, Lemonge ACC, Fonseca LG (2008) A new hybrid ais-ga for constrained optimization problems in mechanical engineering. In: 2008 IEEE congress on evolutionary computation (IEEE world congress on computational intelligence), pp 1455–1462. https://doi.org/10.1109/CEC.2008.4630985

  10. Blake C, Merz C (1998) University of california at irvine repository of machine learning databases. Department of Information and Computer Science, Irvine, CA

    Google Scholar 

  11. Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press Inc, New York, NY

    MATH  Google Scholar 

  12. Boussaïd I, Lepagnot J, Siarry P (2013) A survey on optimization metaheuristics. Inf Sci 237:82–117. https://doi.org/10.1016/j.ins.2013.02.041 prediction, Control and Diagnosis using Advanced Neural Computations

    Article  MathSciNet  MATH  Google Scholar 

  13. Civicioglu P (2013a) Backtracking search optimization algorithm for numerical optimization problems. Appl Math Comput 219(15):8121–8144. https://doi.org/10.1016/j.amc.2013.02.017

    Article  MathSciNet  MATH  Google Scholar 

  14. Civicioglu P (2013b) Backtracking search optimization algorithm for numerical optimization problems. Appl Math Comput 219(15):8121–8144. https://doi.org/10.1016/j.amc.2013.02.017

    Article  MathSciNet  MATH  Google Scholar 

  15. Corne D, Dorigo M, Glover F, Dasgupta D, Moscato P, Poli R, Price KV (eds) (1999) New ideas in optimization. McGraw-Hill Ltd., Maidenhead

    Google Scholar 

  16. Datta D, Figueira JR (2011) A real-integer-discrete-coded particle swarm optimization for design problems. Appl Soft Comput 11(4):3625–3633. https://doi.org/10.1016/j.asoc.2011.01.034

    Article  Google Scholar 

  17. Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evolut Comput 1(1):3–18. https://doi.org/10.1016/j.swevo.2011.02.002

    Article  Google Scholar 

  18. Di Caro G, Ducatelle F, Gambardella LM (2005) Anthocnet: an adaptive nature-inspired algorithm for routing in mobile ad hoc networks. Eur Trans Telecommun 16(5):443–455. https://doi.org/10.1002/ett.1062

    Article  Google Scholar 

  19. Du TS, Ke XT, Liao JG, Shen YJ (2018) Dslc-foa : improved fruit fly optimization algorithm for application to structural engineering design optimization problems. Appl Math Model 55:314–339. https://doi.org/10.1016/j.apm.2017.08.013

    Article  MathSciNet  MATH  Google Scholar 

  20. Eiben AE, Smith JE (2003) Introduction to evolutionary computing. Springer, Berlin. https://doi.org/10.1007/978-3-662-05094-1

  21. Falco ID, Cioppa AD, Tarantino E (2007) Facing classification problems with particle swarm optimization. Appl Soft Comput 7(3):652–658

    Article  Google Scholar 

  22. Falco ID, Cioppa AD, Maisto D, Tarantino E (2008) Differential evolution as a viable tool for satellite image registration. Appl Soft Comput 8(4):1453–1462. https://doi.org/10.1016/j.asoc.2007.10.013 soft Computing for Dynamic Data Mining

    Article  Google Scholar 

  23. Fan S, Ding S, Xue Y (2018) Self-adaptive kernel k-means algorithm based on the shuffled frog leaping algorithm. Soft Comput 22(3):861–872. https://doi.org/10.1007/s00500-016-2389-2

    Article  Google Scholar 

  24. Gandomi AH (2014) Interior search algorithm (isa): a novel approach for global optimization. ISA Trans 53(4):1168–1183. https://doi.org/10.1016/j.isatra.2014.03.018 disturbance Estimation and Mitigation

    Article  Google Scholar 

  25. Gandomi AH, Yang XS (2011) Benchmark problems in structural optimization. Springer, Berlin, pp 259–281

    MATH  Google Scholar 

  26. Golinski J (1970) Optimal synthesis problems solved by means of nonlinear programming and random methods. J Mech 5(3):287–309. https://doi.org/10.1016/0022-2569(70)90064-9. http://www.sciencedirect.com/science/article/pii/0022256970900649

  27. Haldar V, Chakraborty N (2016) A novel evolutionary technique based on electrolocation principle of elephant nose fish and shark: fish electrolocation optimization. Soft Comput pp 1–22. https://doi.org/10.1007/s00500-016-2033-1

  28. Han J, Yang C, Zhou X, Gui W (2018) A two-stage state transition algorithm for constrained engineering optimization problems. Int J Control Autom Syst 16(2):522–534. https://doi.org/10.1007/s12555-016-0338-6

    Article  Google Scholar 

  29. Hatamlou A (2013) Black hole: a new heuristic optimization approach for data clustering. Inf Sci 222(Supple c):175–184. https://doi.org/10.1016/j.ins.2012.08.023

    Article  MathSciNet  Google Scholar 

  30. Holland JH (1992) Adaptation in natural and artificial systems. MIT Press, Cambridge, MA

    Book  Google Scholar 

  31. Hwang CL, Yoon K (2012) Multiple attribute decision making: methods and applications a state-of-the-art survey, vol 186. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  32. Kamilaris A, Prenafeta-Boldú FX (2018) Deep learning in agriculture: a survey. Comput Electron Agric 147:70–90. https://doi.org/10.1016/j.compag.2018.02.016. http://www.sciencedirect.com/science/article/pii/S0168169917308803

  33. Kanagaraj G, Ponnambalam S, Jawahar N, Nilakantan JM (2014) An effective hybrid cuckoo search and genetic algorithm for constrained engineering design optimization. Eng Optim 46(10):1331–1351. https://doi.org/10.1080/0305215X.2013.836640

    Article  MathSciNet  Google Scholar 

  34. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Tech. rep., Technical report-tr06, Erciyes university, engineering faculty, computer engineering department

  35. Karaboga D, Akay B (2009a) A comparative study of artificial bee colony algorithm. Appl Math Comput 214(1):108–132. https://doi.org/10.1016/j.amc.2009.03.090

    Article  MathSciNet  MATH  Google Scholar 

  36. Karaboga D, Akay B (2009b) A survey: algorithms simulating bee swarm intelligence. Artif Intell Rev 31(1):61. https://doi.org/10.1007/s10462-009-9127-4

    Article  Google Scholar 

  37. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm. J Global Optim 39(3):459–471. https://doi.org/10.1007/s10898-007-9149-x

    Article  MathSciNet  MATH  Google Scholar 

  38. Karaboga D, Ozturk C (2011) A novel clustering approach: artificial bee colony (abc) algorithm. Appl Soft Comput 11(1):652–657

    Article  Google Scholar 

  39. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, 1995, vol 4, pp 1942–1948

  40. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680. https://doi.org/10.1126/science.220.4598.671. http://science.sciencemag.org/content/220/4598/671.full.pdf

  41. Kramer B (1996) Electroreception and communication in fishes, vol 42. Gustav Fischer, Berlin

    Google Scholar 

  42. Lebastard V, Chevallereau C, Amrouche A, Jawad B, Girin A, Boyer F, Gossiaux PB (2010) Underwater robot navigation around a sphere using electrolocation sense and kalman filter. In: 2010 IEEE/RSJ international conference on intelligent robots and systems, IEEE. https://doi.org/10.1109/iros.2010.5648929

  43. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JA, van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88. https://doi.org/10.1016/j.media.2017.07.005. http://www.sciencedirect.com/science/article/pii/S1361841517301135

  44. Liu H, Cai Z, Wang Y (2010) Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Appl Soft Comput 10(2):629–640. https://doi.org/10.1016/j.asoc.2009.08.031. http://www.sciencedirect.com/science/article/pii/S1568494609001550

  45. MacIver M, Fontaine E, Burdick J (2004) Designing future underwater vehicles: Principles and mechanisms of the weakly electric fish. IEEE J Oceanic Eng 29(3):651–659. https://doi.org/10.1109/joe.2004.833210

    Article  Google Scholar 

  46. Maciver MA, Nelson ME (2001) Towards a biorobotic electrosensory systemtowards a biorobotic electrosensory system. Auton Robot 11(3):263–266. https://doi.org/10.1023/a:1012443124333

    Article  MATH  Google Scholar 

  47. Mahdavifar S, Ghorbani AA (2019) Application of deep learning to cybersecurity: a survey. Neurocomputing 347:149–176. https://doi.org/10.1016/j.neucom.2019.02.056. http://www.sciencedirect.com/science/article/pii/S0925231219302954

  48. Mezura-Montes E, Hernandez-Ocana B (2008) Bacterial foraging for engineering design problems: preliminary results. In: Memorias del 4o Congreso Nacional de Computacion Evolutiva (COMCEV 2008)

  49. Mezura-Montes E, Coello CC, Landa-Becerra R (2003) Engineering optimization using simple evolutionary algorithm. In: Proceedings of the 15th IEEE international conference on tools with artificial intelligence, IEEE, pp 149–156

  50. Mezura-Montes E, Coello CC, Velázquez-Reyes J (2006) Increasing successful offspring and diversity in differential evolution for engineering design. In: Proceedings of the seventh international conference on adaptive computing in design and manufacture (ACDM 2006), pp 131–139

  51. Mohamed AW (2018) A novel differential evolution algorithm for solving constrained engineering optimization problems. J Intell Manuf 29(3):659–692. https://doi.org/10.1007/s10845-017-1294-6

    Article  Google Scholar 

  52. Moller P (1995) Electric fishes: history and behavior. Chapman and Hall fish and fisheries series. Chapman & Hall, London

    Google Scholar 

  53. Neveln ID, Bai Y, Snyder JB, Solberg JR, Curet OM, Lynch KM, MacIver MA (2013) Biomimetic and bio-inspired robotics in electric fish research. J Exp Biol 216(13):2501–2514. https://doi.org/10.1242/jeb.082743

    Article  Google Scholar 

  54. Nezamabadi-pour H, Saryazdi S, Rashedi E (2006) Edge detection using ant algorithms. Soft Comput 10(7):623–628. https://doi.org/10.1007/s00500-005-0511-y

    Article  Google Scholar 

  55. Opricovic S (1998) Multicriteria optimization of civil engineering systems. Fac Civil Eng Belgrade 2(1):5–21

    MathSciNet  Google Scholar 

  56. Pan WT (2012) A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowl-Based Syst 26:69–74. https://doi.org/10.1016/j.knosys.2011.07.001

    Article  Google Scholar 

  57. Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst Mag 22(3):52–67. https://doi.org/10.1109/MCS.2002.1004010

    Article  Google Scholar 

  58. Rao R, Savsani V, Vakharia D (2011) Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315. https://doi.org/10.1016/j.cad.2010.12.015. http://www.sciencedirect.com/science/article/pii/S0010448510002484

  59. Rao SS (1996) Engineering optimization: theory and practice, 3rd edn. Wiley-Interscience, New Yok

    Google Scholar 

  60. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

    Article  MATH  Google Scholar 

  61. Ridge E, Kudenko D (2007) Screening the parameters affecting heuristic performance. In: Proceedings of the genetic and evolutionary computation conference, ACM

  62. Sandgren E (1990) Nonlinear integer and discrete programming in mechanical design optimization. J Mech Des 112(2):223. https://doi.org/10.1115/1.2912596

    Article  Google Scholar 

  63. dos Santos CL (2010) Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems. Expert Syst Appl 37(2):1676–1683. https://doi.org/10.1016/j.eswa.2009.06.044

    Article  Google Scholar 

  64. Schwefel H (1965) Kybernetische evolution als strategie der experimentellen forschung in der stromungstechnik. Master’s thesis, Technical University of Berlin, Germany

  65. Sen S (2010) Evolutionary computation techniques for intrusion detection in mobile ad hoc networks. PhD thesis, University of York

  66. Solberg JR, Lynch KM, MacIver MA (2007) Robotic electrolocation: active underwater target localization with electric fields. In: Proceedings 2007 IEEE international conference on robotics and automation, pp 4879–4886. https://doi.org/10.1109/ROBOT.2007.364231

  67. Sousa T, Silva A, Neves A (2004) Particle swarm based data mining algorithms for classification tasks. Parallel Comput 30(5–6):767–783. https://doi.org/10.1016/j.parco.2003.12.015 parallel and nature-inspired computational paradigms and applications

    Article  Google Scholar 

  68. Sun F, Hu G (1998) Speech recognition based on genetic algorithm for training HMM. Electron Lett 34(16):1563. https://doi.org/10.1049/el:19980096

    Article  Google Scholar 

  69. Talbi EG (2009) Metaheuristics: from design to implementation, vol 74. Wiley, New Yok

    Book  Google Scholar 

  70. Tan K, Chiam S, Mamun A, Goh C (2009) Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization. Eur J Oper Res 197(2):701–713. https://doi.org/10.1016/j.ejor.2008.07.025

    Article  MATH  Google Scholar 

  71. Wang H, Hu Z, Sun Y, Su Q, Xia X (2018) A novel modified bsa inspired by species evolution rule and simulated annealing principle for constrained engineering optimization problems. Neural Comput Appl. https://doi.org/10.1007/s00521-017-3329-5

  72. Weise T (2008a) Global optimization algorithms - theory and application. 2008th edn. Thomas Weise

  73. Weise T (2008b) Global optimization algorithms – theory and application. 2008th edn. Thomas Weise. http://www.it-weise.de/

  74. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Article  Google Scholar 

  75. Yang X, Suash D (2009) Cuckoo search via lévy flights. In: 2009 world congress on nature biologically inspired computing (NaBIC), pp 210–214. https://doi.org/10.1109/NABIC.2009.5393690

  76. Yang X, Gandomi A, Talatahari S, Alavi A (2012) Metaheuristics in water, geotechnical and transport engineering. Elsevier insights, Elsevier Science, Amsterdam

    Google Scholar 

  77. Yang XS (2010a) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-Inspir Comput 2(2):78–84

    Article  Google Scholar 

  78. Yang XS (2010b) Nature-inspired metaheuristic algorithms, 2nd edn. Luniver Press, Beckington

    Google Scholar 

  79. Yang XS (2013) 1 - optimization and metaheuristic algorithms in engineering. In: Yang XS, Gandomi AH, Talatahari S, Alavi AH (eds) Metaheuristics in water, geotechnical and transport engineering. Elsevier, Oxford, pp 1–23

    Google Scholar 

  80. Yang XS, Cui Z, Xiao R, Gandomi AH, Karamanoglu M (2013) Swarm intelligence and bio-inspired computation: theory and applications, 1st edn. Elsevier Science Publishers B. V., Amsterdam

    Google Scholar 

  81. Zahadat P, Schmickl T (2014) Wolfpack-inspired evolutionary algorithm and a reaction-diffusion-based controller are used for pattern formation. In: Proceedings of the 2014 conference on Genetic and evolutionary computation - GECCO 14, ACM Press. https://doi.org/10.1145/2576768.2598262

  82. Zhang J, Liang C, Huang Y, Wu J, Yang S (2009) An effective multiagent evolutionary algorithm integrating a novel roulette inversion operator for engineering optimization. Appl Math Comput 211(2):392–416. https://doi.org/10.1016/j.amc.2009.01.048

    Article  MathSciNet  MATH  Google Scholar 

  83. Zhang M, Luo W, Wang X (2008) Differential evolution with dynamic stochastic selection for constrained optimization. Inf Sci 178(15):3043–3074. https://doi.org/10.1016/j.ins.2008.02.014 nature Inspired Problem-Solving

    Article  Google Scholar 

  84. Zhang N, Ding S (2017) Unsupervised and semi-supervised extreme learning machine with wavelet kernel for high dimensional data. Memet Comput 9(2):129–139. https://doi.org/10.1007/s12293-016-0198-x

    Article  Google Scholar 

  85. Zhang N, Ding S, Zhang J, Xue Y (2017) Research on point-wise gated deep networks. Appl Soft Comput 52:1210–1221. https://doi.org/10.1016/j.asoc.2016.08.056

    Article  Google Scholar 

  86. Zhang N, Ding S, Zhang J, Xue Y (2018a) An overview on restricted boltzmann machines. Neurocomputing 275:1186–1199. https://doi.org/10.1016/j.neucom.2017.09.065

    Article  Google Scholar 

  87. Zhang Q, Yang LT, Chen Z, Li P (2018b) A survey on deep learning for big data. Inf Fus 42:146–157. https://doi.org/10.1016/j.inffus.2017.10.006. http://www.sciencedirect.com/science/article/pii/S1566253517305328

Download references

Acknowledgements

This work was supported by the National MSc and PhD Scholarship Programme for Senior Undergraduate Students (2228) of the Scientific and Technological Research Council of Turkey (or TUBITAK). The authors appreciate this support. In addition, the authors sincerely acknowledge and thank Hacettepe Teknokent Technology Transfer Center for advanced editing service to this article. Finally, the authors would also like to give special thanks to Dr. Bahriye AKAY for her valuable comments on our study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selim Yilmaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

See Tables 17 and 18.

Table 17 Mathematical benchmark function set used in the first experiment
Table 18 Complex mathematical benchmark set

Appendix 2

See Figs. 10, 11, 12.

Fig. 10
figure 10

Comparative convergence characteristics of EFO for basic mathematical benchmark functions 1–25

Fig. 11
figure 11

Comparative convergence characteristics of EFO for basic mathematical benchmark functions 26–50

Fig. 12
figure 12

Comparative convergence characteristics of EFO for complex mathematical benchmark functions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yilmaz, S., Sen, S. Electric fish optimization: a new heuristic algorithm inspired by electrolocation. Neural Comput & Applic 32, 11543–11578 (2020). https://doi.org/10.1007/s00521-019-04641-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-019-04641-8

Keywords

Navigation