Skip to main content
Log in

A Hierarchical Clustering algorithm based on Silhouette Index for cancer subtype discovery from genomic data

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Identifying potential novel subtypes of cancers from genomic data requires techniques to estimate the number of natural clusters in the data. Determining the number of natural clusters in a dataset has been a challenging problem in Machine Learning. Employing an internal cluster validity index such as Silhouette Index together with a clustering algorithm has been a widely used technique for estimating the number of natural clusters, which has limitations. We propose a Hierarchical Agglomerative Clustering algorithm which automatically estimates the numbers of natural clusters and gives the associated clustering solutions along with dendrograms for visualizing the clustering structure. The algorithm has a Silhouette Index-based criterion for selecting the pair of clusters to merge, in the process of building the clustering hierarchy. The proposed algorithm could find decent estimates for the number of natural clusters, and the associated clustering solutions when applied to a collection of cancer gene expression datasets and general datasets. The proposed method showed better overall performance when compared to that of a set of prominent methods for estimating the number of natural clusters, which are used for cancer subtype discovery from genomic data. The proposed method is deterministic. It can be a better alternative to contemporary approaches for identifying potential novel subtypes of cancers from genomic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. https://www.ncbi.nlm.nih.gov/geo/.

References

  1. Azzalini A, Menardi G (2014) Clustering via nonparametric density estimation: the R package pdfCluster. J Stat Softw 57(11):1–26

    Article  Google Scholar 

  2. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M et al (2012) NCBI GEO: archive for functional genomics data sets-update. Nucleic Acids Res 41(D1):D991–D995. https://doi.org/10.1093/nar/gks1193

    Article  Google Scholar 

  3. Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P, Ladd C, Beheshti J, Bueno R, Gillette M, Loda M, Weber G, Mark EJ, Lander ES, Wong W, Johnson BE, Golub TR, Sugarbaker DJ, Meyerson M (2001) Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Nat Acad Sci 98(24):13790–13795. https://doi.org/10.1073/pnas.191502998

    Article  Google Scholar 

  4. Cai M, Li L (2017) Subtype identification from heterogeneous TCGA datasets on a genomic scale by multi-view clustering with enhanced consensus. BMC Med Genomics 10(4):75. https://doi.org/10.1186/s12920-017-0306-x

    Article  Google Scholar 

  5. Cancer Genome Atlas Research Network et al (2012) Comprehensive molecular portraits of human breast tumors. Nature 490(7418):61. https://doi.org/10.1038/nature11412

    Article  Google Scholar 

  6. Cancer Genome Atlas Research et al (2013) Integrated genomic characterization of endometrial carcinoma. Nature 497(7447):67–73. https://doi.org/10.1038/nature12113

    Article  Google Scholar 

  7. Cavalli FM, Remke M, Rampasek L, Peacock J, Shih DJ, Luu B, Garzia L, Torchia J, Nor C, Morrissy AS et al (2017) Intertumoral heterogeneity within Medulloblastoma subgroups. Cancer Cell 31(6):737–754. https://doi.org/10.1016/j.ccell.2017.05.005

    Article  Google Scholar 

  8. Chalise P, Fridley BL (2017) Integrative clustering of multi-level omic data based on non-negative matrix factorization algorithm. PLoS ONE 12(5):1–18. https://doi.org/10.1371/journal.pone.0176278

    Article  Google Scholar 

  9. Ciriello G, Gatza M, Beck A, Wilkerson M, Rhie S, Pastore A, Zhang H, McLellan M, Yau C, Kandoth C, Bowlby R, Shen H, Hayat S, Fieldhouse R, Lester S, Tse G, Factor R, Collins L, Allison K et al (2015) Comprehensive molecular portraits of invasive lobular breast cancer. Cell 163(2):506–519. https://doi.org/10.1016/j.cell.2015.09.033

    Article  Google Scholar 

  10. de Souto MC, Costa IG, de Araujo DS, Ludermir TB, Schliep A (2008) Clustering cancer gene expression data: a comparative study. BMC Bioinform 9(1):497. https://doi.org/10.1186/1471-2105-9-497

    Article  Google Scholar 

  11. Galili T (2015) dendextend: an R package for visualizing, adjusting, and comparing trees of hierarchical clustering. Bioinformatics. https://doi.org/10.1093/bioinformatics/btv428

    Article  Google Scholar 

  12. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA et al (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439):531–537. https://doi.org/10.1126/science.286.5439.531

    Article  Google Scholar 

  13. Gowrishankar B, Przybycin CG, Ma C, Nandula SV, Rini B, Campbell S, Klein E, Chaganti R, Magi-Galluzzi C, Houldsworth J (2015) A genomic algorithm for the molecular classification of common renal cortical neoplasms: development and validation. J Urol 193(5):1479–1485. https://doi.org/10.1016/j.juro.2014.11.099

    Article  Google Scholar 

  14. Griesinger AM, Josephson RJ, Donson AM, Levy JMM, Amani V, Birks DK, Hoffman LM, Furtek SL, Reigan P, Handler MH et al (2015) Interleukin-6/STAT3 pathway signaling drives an inflammatory phenotype in Group A ependymoma. Cancer Immunol Res. https://doi.org/10.1158/2326-6066.CIR-15-0061

    Article  Google Scholar 

  15. Guo Y, Zheng J, Shang X, Li Z (2018) A similarity regression fusion model for integrating multi-omics data to identify cancer subtypes. Genes. https://doi.org/10.3390/genes9070314

    Article  Google Scholar 

  16. Hubert L, Arabie P (1985) Comparing partitions. J Classif 2(1):193–218. https://doi.org/10.1007/BF01908075

    Article  MATH  Google Scholar 

  17. Karatzoglou A, Smola A, Hornik K, Zeileis A (2004) kernlab—an S4 package for kernel methods in R. J Stat Softw 11(9):1–20

    Article  Google Scholar 

  18. Karlsson A, Brunnström H, Micke P, Veerla S, Mattsson J, La Fleur L, Botling J, Jönsson M, Reuterswärd C, Planck M et al (2017) Gene expression profiling of large cell lung cancer links transcriptional phenotypes to the new histological WHO 2015 classification. J Thorac Oncol. https://doi.org/10.1016/j.jtho.2017.05.008

    Article  Google Scholar 

  19. Kaufman L, Rousseeuw P (1987) Clustering by means of medoids. In: Dodge Y (ed) Statistical data analysis based on the L1-norm and related methods. Elsevier Science Pub. Co., Amsterdam, pp 405–416

    Google Scholar 

  20. Laiho P, Kokko A, Vanharanta S, Salovaara R, Sammalkorpi H, Järvinen H, Mecklin J, Karttunen T, Tuppurainen K, Davalos V, Arango D, Aaltonen LA (2007) Serrated carcinomas form a subclass of colorectal cancer with distinct molecular basis. Oncogene 26(2):312

    Article  Google Scholar 

  21. Li Z, Chen Y, Hu S, Zhang J, Wu J, Ren W, Shao N, Ying X (2016) Integrative analysis of protein-coding and non-coding RNAs identifies clinically relevant subtypes of clear cell renal cell carcinoma. Oncotarget 7(50):82671. https://doi.org/10.18632/oncotarget.12340

    Article  Google Scholar 

  22. Lichman M (2013) UCI machine learning repository. https://doi.org/http://archive.ics.uci.edu/ml. Accessed 08 Mar 2018

  23. Lloyd S (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28(2):129–137. https://doi.org/10.1109/TIT.1982.1056489

    Article  MathSciNet  MATH  Google Scholar 

  24. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horwitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834

    Article  Google Scholar 

  25. Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K (2017) Cluster: cluster analysis basics and extensions. R package version 2.0.6

  26. Mehmood R, El-Ashram S, Bie R, Dawood H, Kos A (2017) Clustering by fast search and merge of local density peaks for gene expression microarray data. Sci Rep. https://doi.org/10.1038/srep45602

    Article  Google Scholar 

  27. Mertins P, Mani DR, Ruggles KV, Gillette MA, Clauser KR, Wang P, Wang X, Qiao JW, Cao S, Petralia F, Kawaler E, Mundt F, Krug K, Tu Z, Lei JT, Gatza ML, Wilkerson M, Perou CM, Yellapantula V, Kl Huang et al (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534:55. https://doi.org/10.1038/nature18003

    Article  Google Scholar 

  28. Monti S, Tamayo P, Mesirov J, Golub T (2003) Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data. Mach Learn 52(1):91–118. https://doi.org/10.1023/A:1023949509487

    Article  MATH  Google Scholar 

  29. Mouselimis L (2018) ClusterR: Gaussian mixture models, K-means, mini-batch-KMeans and K-Medoids clustering. https://CRAN.R-project.org/package=ClusterR. R package version 1.1.1

  30. Ng AY, Jordan MI, Weiss Y (2002) On spectral clustering: analysis and an algorithm. In: Advances in neural information processing systems, pp 849–856

  31. Nidheesh N, Abdul Nazeer KA, Ameer PM (2017) An enhanced deterministic K-means clustering algorithm for cancer subtype prediction from gene expression data. Comput Biol Med 91:213–221. https://doi.org/10.1016/j.compbiomed.2017.10.014

    Article  Google Scholar 

  32. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

  33. Reddy CK, Vinzamuri B (2013) A survey of partitional and hierarchical clustering algorithms. In: Aggarwal CC, Reddy CK (eds) Data clustering: algorithms and applications, Chap 4. Chapman & Hall/CRC, Boca Raton, pp 87–110

    Google Scholar 

  34. Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65

    Article  Google Scholar 

  35. Senbabaoğlu Y, Michailidis G, Li JZ (2014) Critical limitations of consensus clustering in class discovery. Sci Rep 4:6207. https://doi.org/10.1038/srep06207

    Article  Google Scholar 

  36. Shen R, Olshen AB, Ladanyi M (2009) Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics 25(22):2906–2912. https://doi.org/10.1093/bioinformatics/btp543

    Article  Google Scholar 

  37. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905. https://doi.org/10.1109/34.868688

    Article  Google Scholar 

  38. Shi Q, Zhang C, Peng M, Yu X, Zeng T, Liu J, Chen L (2017) Pattern fusion analysis by adaptive alignment of multiple heterogeneous omics data. Bioinformatics 33(17):2706–2714. https://doi.org/10.1093/bioinformatics/btx176

    Article  Google Scholar 

  39. Tan PN, Steinbach M, Kumar V (2005) Introduction to data mining, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston

    Google Scholar 

  40. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M, O’Kelly M, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler HS et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110. https://doi.org/10.1016/j.ccr.2009.12.020

    Article  Google Scholar 

  41. Wang B, Mezlini AM, Demir F, Fiume M, Tu Z, Brudno M, Haibe-Kains B, Goldenberg A (2014) Similarity network fusion for aggregating data types on a genomic scale. Nat Methods 11:333. https://doi.org/10.1038/nmeth.2810

    Article  Google Scholar 

  42. Ward JH Jr (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58(301):236–244

    Article  MathSciNet  Google Scholar 

  43. Wilkerson MD, Hayes DN (2010) ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics 26(12):1572–1573

    Article  Google Scholar 

  44. Wiwie C, Baumbach J, Röttger R (2015) Comparing the performance of biomedical clustering methods. Nat Methods 12(11):1033. https://doi.org/10.1038/NMETH.3583

    Article  Google Scholar 

  45. Wu D, Wang D, Zhang MQ, Gu J (2015) Fast dimension reduction and integrative clustering of multi-omics data using low-rank approximation: application to cancer molecular classification. BMC Genom 16(1):1022. https://doi.org/10.1186/s12864-015-2223-8

    Article  Google Scholar 

  46. Yu Z, Wongb HS, You J, Yang Q, Liao H (2011) Knowledge based cluster ensemble for cancer discovery from biomolecular data. IEEE Trans Nanobiosci 10(2):76–85

    Article  Google Scholar 

  47. Yu Z, Li L, You J, Wong HS, Han G (2012) Sc$^3$: triple spectral clustering-based consensus clustering framework for class discovery from cancer gene expression profiles. IEEE/ACM Trans Comput Biol Bioinform 9(6):1751–1765

    Article  Google Scholar 

  48. Yu Z, You J, Li L, Wong HS, Han G (2012) Representative distance: a new similarity measure for class discovery from gene expression data. IEEE Trans Nanobiosci 11(4):341–351

    Article  Google Scholar 

  49. Zheng S, Cherniack A, Dewal N, Moffitt R, Danilova L, Murray B, Lerario A, Else T, Knijnenburg T, Ciriello G, Kim S, Assie G, Morozova O, Akbani R et al (2016) Comprehensive pan-genomic characterization of adrenocortical carcinoma. Cancer Cell 29(5):723–736

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Nidheesh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 462 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nidheesh, N., Nazeer, K.A.A. & Ameer, P.M. A Hierarchical Clustering algorithm based on Silhouette Index for cancer subtype discovery from genomic data. Neural Comput & Applic 32, 11459–11476 (2020). https://doi.org/10.1007/s00521-019-04636-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-019-04636-5

Keywords

Navigation