Skip to main content
Log in

Rotation-invariant features based on directional coding for texture classification

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

A directional coding (DC) method is proposed to extract rotation-invariant features for texture classification. DC uses four orientations in \(3\times 3\) neighborhood pixel. For each orientation, the rank order of the central gray-level pixel is calculated. The four ranks are used to get 15 codes. The codes are combined with the information of the central pixel to extract 30 rotation-invariant features. For a multi-resolution study, DC is calculated by altering the window size around a central pixel. The number of samples is restricted to eight neighbors by local averaging. Therefore, in each single-scale DC histogram, the number of bins is kept small and constant. Outex, CUReT and KTH_TIPS2 databases are used to evaluate and compare the proposed method against some state-of-the-art local binary techniques and other texture analysis methods. The results obtained suggest that the proposed DC method outperforms other methods making it attractive for use in computer vision problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang J, Tan T (2002) Brief review of invariant texture analysis methods. Pattern Recogn 35:735–747

    Article  Google Scholar 

  2. Haralik RM, Shanmugam K, Dinstein I (1973) Texture features for image classification. IEEE Trans Syst Man Cybern 3(6):610–621

    Article  Google Scholar 

  3. Kashyap RL, Khotanzed A (1973) A model-based method for rotation invariant texture classification. IEEE Trans Pattern Anal Mach Intell 8(4):610–621

    Google Scholar 

  4. Cohen FS, Fan Z, Patel MA (1991) Classification of rotated and scaled textured image using Gaussian markov random field models. IEEE Trans Pattern Anal Mach Intell 13:192–202

    Article  Google Scholar 

  5. Chen JL, Kundu A (1994) Rotation and gray scale transform invariant texture identification using wavelet decomposition and hidden Markov model. IEEE Trans Pattern Anal Mach Intell 16(2):208–214

    Article  Google Scholar 

  6. Deng H, Clausi DA (2004) Gaussian MRF rotation invariant features for image classification. IEEE Tran Image Process 26(7):951–955

    Google Scholar 

  7. Dharmagunawardhana C, Mahmoodi S, Bennett M, Niranjan M (2016) Rotation invariant texture descriptors based on Gaussian Markov random fields for classification. Pattern Recogn Lett 69:15–21

    Article  Google Scholar 

  8. Varma M, Zisserman A (2005) A statistical approach to texture classification from single images. Int J Comput Vis 62(1–2):61–81

    Article  Google Scholar 

  9. Ahmadvand A, Daliri MR (2016) Invariant texture classification using a spatial filter bank in multi-resolution analysis. Image Vis Comput 45:1–10

    Article  Google Scholar 

  10. Ahmadvand A, Reza Daliri M (2016) Rotation invariant classification using extended wavelet channel combining and LL channel filter bank. Knowl Based Syst 97:75–88

    Article  Google Scholar 

  11. Ojala T, Pietikainen M, Maenpaa M (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal 24(7):971–987

    Article  Google Scholar 

  12. Hafiane A, Palaniappan K, Seetharaman G (2015) Median binary patterns for texture classification. Pattern Recogn 48:2609–2620

    Article  Google Scholar 

  13. Hegenbart S, Andreas Uhl (2015) A scale-and orientation-adaptive extension of Local Binary Patterns for texture classification. Pattern Recogn 48:2633–2644

    Article  Google Scholar 

  14. Zhao Y, Wang RG, Wang WM, Gao W (2016) Local quantization code histogram for texture classification. Neurocomputing 207:354–364

    Article  Google Scholar 

  15. Liao S, Law MWK, Chung ACS (2009) Dominant local binary patterns for texture classification. IEEE Trans Image Process 18(5):1107–1117

    Article  MathSciNet  Google Scholar 

  16. Heikkila M, Pietikainnen M, Schmid C (2006) Description of interest regions with center-symmetric local binary patterns. Proc Comput Vis Graph Image Process 4338:58–69

    Google Scholar 

  17. Guo Z, Zhang L, Zhang D (2010) A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process 9(16):1657–1663

    MathSciNet  MATH  Google Scholar 

  18. Khellah FM (2011) Texture classification using dominant neighborhood structure. IEEE Trans Image Process 20(11):3270–3279

    Article  MathSciNet  Google Scholar 

  19. Liu L, Long Y, Fieguth P, Lao S, Zhao G (2014) BRINT: binary rotation invariant and noise tolerant texture classification. IEEE Trans Image Process 23(7):3071–3084

    Article  MathSciNet  Google Scholar 

  20. Zhao Y, Jia W, Hu RX, Min H (2013) Completed robust local binary pattern for texture classification. Neurocomputing 106:68–76

    Article  Google Scholar 

  21. Ojala T, Maenpaa T, Pietikanen P, Viertola J, Kyllonen J, Huovinen S (2002) OutexNew framework for empirical evaluation of texture analysis algorithms. In: International conference on pattern recognition, 1, 701–706, http://www.outex.oulou.fi

  22. Dana K, Van-Ginneken B, Nayar S, Koenderink J (1999) Reflectance and texture of real world surfaces. ACM Trans Graph 181-34 . http://www.cs.columbia.edu/CAVE//exclude/curet/

  23. Mallikarjuna P, Fritz M, Targhi AT, Hayman E, Caputo B, Eklundh J. The KTH-TIPS2 Databases. http://www.nada.kth.se/cvap/databases/kth-tips/

  24. Varma M, Zisserman A (2009) A statistical approach to material classification using image patch exemplars. IEEE Trans Pattern Anal Mach Intell 31:2032–2047

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farida Ouslimani.

Ethics declarations

Conflict of interest

No conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouslimani, F., Ouslimani, A. & Ameur, Z. Rotation-invariant features based on directional coding for texture classification. Neural Comput & Applic 31, 6393–6400 (2019). https://doi.org/10.1007/s00521-018-3462-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-3462-9

Keywords

Navigation