Skip to main content
Log in

Fractional Volterra LMS algorithm with application to Hammerstein control autoregressive model identification

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In the present study, strength of fractional-order adaptive signal processing through fractional Volterra least mean square (FV-LMS) algorithm is exploited for Hammerstein nonlinear control autoregressive model (HN-CAR) identification. The FV-LMS method is a generalization of standard V-LMS by taking usual gradient as well as fractional derivative of cost function in the optimization process. The adaptive scheme FV-LMS is applied to HN-CAR systems for different variations of step size parameter, noise and fractional order. Comparative study of the optimized design variables by FV-LMS from true values of HN-CAR model is carried out using performance metrics of fitness and mean square error, to establish its effectiveness. The performance of the proposed scheme is validated through comparison with standard V-LMS based on multiple independent runs of the scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang Y, Ding F (2016) Parameter estimation algorithms for Hammerstein–Wiener systems with autoregressive moving average noise. J Comput Nonlinear Dyn 11(3):031012

    Article  Google Scholar 

  2. Banerjee A, Abu-Mahfouz I (2014) A comparative analysis of particle swarm optimization and differential evolution algorithms for parameter estimation in nonlinear dynamic systems. Chaos, Solitons Fractals 58:65–83

    Article  MathSciNet  MATH  Google Scholar 

  3. Strebel O (2013) A preprocessing method for parameter estimation in ordinary differential equations. Chaos, Solitons Fractals 57:93–104

    Article  MathSciNet  MATH  Google Scholar 

  4. Wang Y, Ding F (2016) Recursive least squares algorithm and gradient algorithm for Hammerstein–Wiener systems using the data filtering. Nonlinear Dyn 84(2):1045–1053

    Article  MathSciNet  MATH  Google Scholar 

  5. Wang D (2016) Hierarchical parameter estimation for a class of MIMO Hammerstein systems based on the reframed models. Appl Math Lett 57:13–19

    Article  MathSciNet  MATH  Google Scholar 

  6. Khani F, Haeri M (2015) Robust model predictive control of nonlinear processes represented by Wiener or Hammerstein models. Chem Eng Sci 129:223–231

    Article  Google Scholar 

  7. Holcomb CM, de Callafon RA, Bitmead RR (2014) Closed-loop identification of Hammerstein systems with application to gas turbines. IFAC Proc 47(3):493–498

    Article  Google Scholar 

  8. Togun N, Baysec S, Kara T (2012) Nonlinear modeling and identification of a spark ignition engine torque. Mech Syst Signal Process 26:294–304

    Article  Google Scholar 

  9. Zhao Y, Jiang Y, Feng J, Wu L (2016) Modeling of memristor-based chaotic systems using nonlinear Wiener adaptive filters based on backslash operator. Chaos Solitons Fractals 87:12–16

    Article  MathSciNet  MATH  Google Scholar 

  10. Rébillat M, Hennequin R, Corteel E, Katz BF (2011) Identification of cascade of Hammerstein models for the description of nonlinearities in vibrating devices. J Sound Vib 330(5):1018–1038

    Article  Google Scholar 

  11. Ugalde HMR, Carmona JC, Alvarado VM, Reyes-Reyes J (2013) Neural network design and model reduction approach for black box nonlinear system identification with reduced number of parameters. Neurocomputing 101:170–180

    Article  Google Scholar 

  12. Oprisan SA (2002) An application of the least-squares method to system parameters extraction from experimental data. Chaos Interdiscip J Nonlinear Sci 12(1):27–32

    Article  Google Scholar 

  13. Ugalde HMR, Carmona JC, Reyes-Reyes J, Alvarado VM, Mantilla J (2015) Computational cost improvement of neural network models in black box nonlinear system identification. Neurocomputing 166:96–108

    Article  Google Scholar 

  14. Corbier C, Ugalde HMR (2016) Low-order control-oriented modeling of piezoelectric actuator using Huberian function with low threshold: pseudolinear and neural network models. Nonlinear Dyn 85(2):923–940

    Article  MathSciNet  MATH  Google Scholar 

  15. Vörös J (2015) Iterative identification of nonlinear dynamic systems with output backlash using three-block cascade models. Nonlinear Dyn 79(3):2187–2195

    Article  MathSciNet  Google Scholar 

  16. Guo Y, Guo LZ, Billings SA, Lang ZQ (2016) A new efficient system identification method for nonlinear multiple degree-of-freedom structural dynamic systems. J Comput Nonlinear Dyn 11(2):021012

    Article  Google Scholar 

  17. Billings SA (2013) Nonlinear system identification: NARMAX methods in the time, frequency, and spatio-temporal domains. Wiley, Chichester

    Book  MATH  Google Scholar 

  18. Chaudhary NI, Raja MAZ (2015) Design of fractional adaptive strategy for input nonlinear Box–Jenkins systems. Signal Process 116:141–151

    Article  Google Scholar 

  19. Chen H, Xiao Y, Ding F (2014) Hierarchical gradient parameter estimation algorithm for Hammerstein nonlinear systems using the key term separation principle. Appl Math Comput 247:1202–1210

    MathSciNet  MATH  Google Scholar 

  20. Mao Y, Ding F (2015) Multi-innovation stochastic gradient identification for Hammerstein controlled autoregressive autoregressive systems based on the filtering technique. Nonlinear Dyn 79(3):1745–1755

    Article  MATH  Google Scholar 

  21. Mao Y, Ding F (2015) A novel data filtering based multi-innovation stochastic gradient algorithm for Hammerstein nonlinear systems. Digit Signal Process 46:215–225

    Article  MathSciNet  Google Scholar 

  22. Chaudhary NI, Zubair S, Raja MAZ (2016) Design of momentum LMS adaptive strategy for parameter estimation of Hammerstein controlled autoregressive systems. Neural Comput Appl. https://doi.org/10.1007/s00521-016-2762-1

    Article  Google Scholar 

  23. Mao Y, Ding F (2016) A novel parameter separation based identification algorithm for Hammerstein systems. Appl Math Lett 60:21–27

    Article  MathSciNet  MATH  Google Scholar 

  24. Chaudhary NI, Raja MAZ (2015) Identification of Hammerstein nonlinear ARMAX systems using nonlinear adaptive algorithms. Nonlinear Dyn 79(2):1385–1397

    Article  MathSciNet  MATH  Google Scholar 

  25. Aslam MS, Chaudhary NI, Raja MAZ (2016) A sliding-window approximation-based fractional adaptive strategy for Hammerstein nonlinear ARMAX systems. Nonlinear Dyn. https://doi.org/10.1007/s11071-016-3058-9

    Article  MATH  Google Scholar 

  26. Li G, Wen C, Zheng WX, Chen Y (2011) Identification of a class of nonlinear autoregressive models with exogenous inputs based on kernel machines. IEEE Trans Signal Process 59(5):2146–2159

    Article  MathSciNet  MATH  Google Scholar 

  27. Chen H, Ding F (2015) Hierarchical least squares identification for hammerstein nonlinear controlled autoregressive systems. Circuits Syst Signal Process 34(1):61–75

    Article  MathSciNet  MATH  Google Scholar 

  28. Chen H, Ding F, Xiao Y (2015) Decomposition-based least squares parameter estimation algorithm for input nonlinear systems using the key term separation technique. Nonlinear Dyn 79(3):2027–2035

    Article  MATH  Google Scholar 

  29. Xiao Y, Song G, Liao Y, Ding R (2012) Multi-innovation stochastic gradient parameter estimation for input nonlinear controlled autoregressive models. Int J Control Autom Syst 10(3):639–643

    Article  Google Scholar 

  30. Hu H, Ding R (2014) Least squares based iterative identification algorithms for input nonlinear controlled autoregressive systems based on the auxiliary model. Nonlinear Dyn 76(1):777–784

    Article  MathSciNet  MATH  Google Scholar 

  31. Raja MAZ, Shah AA, Mehmood A, Chaudhary NI, Aslam MS (2016) Bio-inspired computational heuristics for parameter estimation of nonlinear Hammerstein controlled autoregressive system. Neural Comput Appl. https://doi.org/10.1007/s00521-016-2677-x

    Article  Google Scholar 

  32. Chaudhary NI, Raja MAZ, Khan JA, Aslam MS (2013) Identification of input nonlinearcontrol autoregressive systems using fractional signal processing approach. Sci World J 2013:467276

    Article  Google Scholar 

  33. Chaudhary NI, Raja MAZ, Khan AUR (2015) Design of modified fractional adaptive strategies for Hammerstein nonlinear control autoregressive systems. Nonlinear Dyn 82(4):1811–1830

    Article  Google Scholar 

  34. Podlubny I (1999) Fractional differential equations. Academic Press, New York

    MATH  Google Scholar 

  35. Kilbsa AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations, vol 204. Elsevier Science Limited, Amsterdam

    Google Scholar 

  36. Wu GC, Baleanu D, Xie HP (2016) Riesz Riemann–Liouville difference on discrete domains. Chaos Interdiscip J Nonlinear Sci 26(8):084308

    Article  MathSciNet  MATH  Google Scholar 

  37. Ortigueira MD (2011) Fractional calculus for scientists and engineers, vol 84. Springer, New York

    Book  MATH  Google Scholar 

  38. Wu GC, Baleanu D (2014) Chaos synchronization of the discrete fractional logistic map. Signal Process 102:96–99

    Article  Google Scholar 

  39. Srivastava HM, Baleanu D, Li C (2016) Preface: recent advances in fractional dynamics. Chaos Interdiscip J Nonlinear Sci 26(8):084101

    Article  Google Scholar 

  40. Ortigueira MD, Machado JT (2006) Fractional calculus applications in signals and systems. Signal Process 86(10):2503–2504

    Article  MATH  Google Scholar 

  41. Ortigueira MD, Ionescu CM, Machado JT, Trujillo JJ (2015) Fractional signal processing and applications. Signal Process 107:197

    Article  Google Scholar 

  42. Alkahtani BST, Atangana A (2016) Analysis of non-homogeneous heat model with new trend of derivative with fractional order. Chaos Solitons Fractals 89:566–571

    Article  MathSciNet  MATH  Google Scholar 

  43. Wu GC, Baleanu D, Lin ZX (2016) Image encryption technique based on fractional chaotic time series. J Vib Control 22(8):2092–2099

    Article  MathSciNet  Google Scholar 

  44. Pu YF, Zhang N, Zhang Y, Zhou JL (2016) A texture image denoising approach based on fractional developmental mathematics. Pattern Anal Appl 19(2):427–445

    Article  MathSciNet  Google Scholar 

  45. Gómez-Aguilar JF (2017) Irving–Mullineux oscillator via fractional derivatives with Mittag-Leffler kernel. Chaos Solitons Fractals 95:179–186

    Article  MathSciNet  MATH  Google Scholar 

  46. Chen L, Pan W, Wu R, Wang K, He Y (2016) Generation and circuit implementation of fractional-order multi-scroll attractors. Chaos Solitons Fractals 85:22–31

    Article  MathSciNet  MATH  Google Scholar 

  47. Wu GC, Baleanu D, Xie HP, Zeng SD (2016) Discrete fractional diffusion equation of chaotic order. Int J Bifurc Chaos 26(01):1650013

    Article  MathSciNet  MATH  Google Scholar 

  48. Alkahtani BST (2016) Chua’s circuit model with Atangana–Baleanu derivative with fractional order. Chaos Solitons Fractals 89:547–551

    Article  MathSciNet  MATH  Google Scholar 

  49. Baleanu D, Güvenç ZB, Machado JT (eds) (2010) New trends in nanotechnology and fractional calculus applications. Springer, New York

    Google Scholar 

  50. Pu YF, Yi Z, Zhou JL (2016) Fractional hopfield neural networks: fractional dynamic associative recurrent neural networks. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2016.2582512

    Article  Google Scholar 

  51. Pu YF (2016) Analog circuit realization of arbitrary-order fractional hopfield neural networks: a novel application of fractor to defense against chip cloning attacks. IEEE Access. https://doi.org/10.1109/ACCESS.2016.2606160

    Article  Google Scholar 

  52. Pu YF, Yi Z, Zhou J Li (2016) Defense against chip cloning attacks based on fractional hopfield neural networks. Int J Neural Syst. https://doi.org/10.1142/S0129065717500034

    Article  Google Scholar 

  53. Malek H, Dadras S, Chen Y (2016) Fractional order esr modeling of electrolytic capacitor & fractional order failure prediction with application to predictive maintenance. IET Power Electron 9:1608–1613

    Article  Google Scholar 

  54. Golmankhaneh AK, Arefi R, Baleanu D (2015) Synchronization in a nonidentical fractional order of a proposed modified system. J Vib Control 21(6):1154–1161

    Article  MathSciNet  MATH  Google Scholar 

  55. Safarinejadian B, Asad M, Sadeghi MS (2016) Simultaneous state estimation and parameter identification in linear fractional order systems using coloured measurement noise. Int J Control 89(11):2277–2296

    Article  MathSciNet  MATH  Google Scholar 

  56. Chen Y, Xue D, Visioli A (2016) Guest editorial for special issue on fractional order systems and controls. IEEE/CAA J Autom Sin 3(3):255–256

    Article  MathSciNet  Google Scholar 

  57. Baleanu D, Machado JAT, Luo AC (eds) (2011) Fractional dynamics and control. Springer, Berlin

    MATH  Google Scholar 

  58. Soorki MN, Tavazoei MS (2016) Constrained swarm stabilization of fractional order linear time invariant swarm systems. IEEE/CAA J Autom Sin 3(3):320–331

    Article  MathSciNet  Google Scholar 

  59. Zahoor RMA, Qureshi IM (2009) A modified least mean square algorithm using fractional derivative and its application to system identification. Eur J Sci Res 35(1):14–21

    Google Scholar 

  60. Chaudhary NI, Ahmed M, Khan ZA, Zubair S, Raja MAZ, Dedovic N (2018) Design of normalized fractional adaptive algorithms for parameter estimation of control autoregressive autoregressive systems. Appl Math Model 55:698–715

    Article  MathSciNet  Google Scholar 

  61. Pu YF, Zhou JL, Zhang Y, Zhang N, Huang G, Siarry P (2015) Fractional extreme value adaptive training method: fractional steepest descent approach. IEEE Trans Neural Netw Learn Syst 26(4):653–662

    Article  MathSciNet  Google Scholar 

  62. Chaudhary NI, Raja MAZ, Aslam MS, Ahmed N (2016) Novel generalization of Volterra LMS algorithm to fractional order with application to system identification. Neural Comput Appl. https://doi.org/10.1007/s00521-016-2548-5

    Article  Google Scholar 

  63. Cheng S, Wei Y, Chen Y, Li Y, Wang Y (2016) An innovative fractional order LMS based on variable initial value and gradient order. Signal Process. https://doi.org/10.1016/j.sigpro.2016.11.026

    Article  Google Scholar 

  64. Cheng S, Wei Y, Chen Y, Liang S, Wang Y (2016) A universal modified LMS algorithm with iteration order hybrid switching. ISA Trans. https://doi.org/10.1016/j.isatra.2016.11.019

    Article  Google Scholar 

  65. Raja MAZ, Chaudhary NI (2015) Two-stage fractional least mean square identification algorithm for parameter estimation of CARMA systems. Signal Process 107:327–339

    Article  Google Scholar 

  66. Raja MAZ, Chaudhary NI (2014) Adaptive strategies for parameter estimation of Box-Jenkins systems. IET Signal Process 8(9):968–980

    Article  Google Scholar 

  67. Shah SM, Samar R, Khan NM, Raja MAZ (2016) Fractional-order adaptive signal processing strategies for active noise control systems. Nonlinear Dyn. https://doi.org/10.1007/s11071-016-2765-6

    Article  MathSciNet  Google Scholar 

  68. Geravanchizadeh M, Ghalami Osgouei S (2014) Speech enhancement by modified convex combination of fractional adaptive filtering. Iran J Electr Electron Eng 10(4):256–266

    Google Scholar 

  69. Zubair S, Chaudhary NI, Khan ZA, Wang W (2018) Momentum fractional LMS for power signal parameter estimation. Signal Process 142:441–449

    Article  Google Scholar 

  70. Chaudhary NI, Zubair S, Raja MAZ (2017) A new computing approach for power signal modeling using fractional adaptive algorithms. ISA Trans 68:189–202

    Article  Google Scholar 

  71. Schetzen M (1980) The Volterra and Wiener theories of nonlinear systems. Wiley, New York

    MATH  Google Scholar 

  72. Diniz PS (2013) Adaptive filtering algorithms and practical implementation, 4th edn. Springer, Boston, MA. ISBN 978-1-4614-4105-2

    Book  MATH  Google Scholar 

  73. Sigrist Z, Grivel E, Alcoverro B (2012) Estimating second-order Volterra system parameters from noisy measurements based on an LMS variant or an errors-in-variables method. Signal Process 92(4):1010–1020

    Article  Google Scholar 

  74. Azpicueta-Ruiz LA, Zeller M, Figueiras-Vidal AR, Kellermann W, Arenas-Garcia J (2013) Enhanced adaptive Volterra filtering by automatic attenuation of memory regions and its application to acoustic echo cancellation. IEEE Trans Signal Process 61(11):2745–2750

    Article  MathSciNet  MATH  Google Scholar 

  75. Tan L, Jiang J (2001) Adaptive Volterra filters for active control of nonlinear noise processes. IEEE Trans Signal Process 49(8):1667–1676

    Article  Google Scholar 

  76. Haykin S (1966) Adaptive filter theory. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  77. Xiong W, Fan W, Ding R (2012) Least-squares parameter estimation algorithm for a class of inputnonlinear systems. J Appl Math 2012:684074

    MATH  Google Scholar 

  78. Azad SK (2017) Enhanced hybrid metaheuristic algorithms for optimal sizing of steel truss structures with numerous discrete variables. Struct Multidiscip Optim 55(6):2159–2180

    Article  Google Scholar 

  79. Azad SK (2018) Seeding the initial population with feasible solutions in metaheuristic optimization of steel trusses. Eng Optim 50(1):89–105

    Article  MathSciNet  Google Scholar 

  80. Azad SK, Akış T (2016) Automated selection of optimal material for pressurized multi-layer composite tubes based on an evolutionary approach. Neural Comput Appl. https://doi.org/10.1007/s00521-016-2563-6

    Article  Google Scholar 

  81. Bildik N, Deniz S (2017) A new efficient method for solving delay differential equations and a comparison with other methods. Eur Phys J Plus 132(1):51

    Article  Google Scholar 

  82. Deniz S, Bildik N (2017) A new analytical technique for solving Lane–Emden type equations arising in astrophysics. Bull Belg Math Soc-Simon Stevin 24(2):305–320

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveed Ishtiaq Chaudhary.

Ethics declarations

Conflict of interest

All authors declared that there are no potential conflicts of interest.

Human and animal rights statements

All authors declared that there is no research involving human and/or animal.

Informed consent

All authors declared that there is no material that required informed consent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, N.I., Manzar, M.A. & Raja, M.A.Z. Fractional Volterra LMS algorithm with application to Hammerstein control autoregressive model identification. Neural Comput & Applic 31, 5227–5240 (2019). https://doi.org/10.1007/s00521-018-3362-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-3362-z

Keywords

Navigation