Skip to main content

Advertisement

Log in

Differential evolution-based efficient multi-objective optimal power flow

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a novel-efficient evolutionary-based multi-objective optimization (MOO) approaches for solving the optimal power flow (OPF) problem using the concept of incremental load flow model based on sensitivities and some heuristics. This paper is useful in robust decision-making for the system operator. The main disadvantage of meta-heuristic-based MOO approach is computationally burdensome. The motivation of this paper is to overcome this drawback. By using the proposed efficient MOO approach, the number of load flows to be performed is reduced substantially, resulting to the solution speed up. Here, three objective functions, i.e., generator fuel cost minimization, loss minimization, and L index minimization are considered. The proposed approach can effectively handle the complex non-linearities, discontinuities, discrete variables, and multiple objectives. The potential and suitability of the proposed efficient MOO approach is tested on the IEEE 30 bus system. The results obtained with the proposed efficient MOO approach are also compared with the meta-heuristic-based non-dominated sorting genetic algorithm-2 (NSGA-II) technique. In this paper, the proposed efficient MOO approach is implemented using the differential evolutionary (DE) algorithm. However, it is a generic one and can be implemented with any type of evolutionary algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Osman MS, Abo-Sinna MA, Mousa AA (2004) A solution to the optimal power flow using genetic algorithm. Appl Math Comput 155(2):391–405

    MathSciNet  MATH  Google Scholar 

  2. Sailaja Kumari M, Maheswarapu S (2010) Enhanced genetic algorithm based computation technique for multi-objective optimal power flow solution. Int J Electr Power Energy Syst 32(6):736–742

    Article  Google Scholar 

  3. Bakirtzis AG, Biskas PN, Zoumas CE, Petridis V (2002) Optimal power flow by enhanced genetic algorithm. IEEE Trans Power Syst 17(2):229–236

    Article  Google Scholar 

  4. Abido MA (2002) Optimal power flow using particle swarm optimization. Int J Electr Power Energy Syst 24(7):563–571

    Article  Google Scholar 

  5. Ongsakul W, Tantimaporn T (2006) Optimal power flow by improved evolutionary programming. Electric Power Components and Systems 34(1):79–95

    Article  Google Scholar 

  6. Abou El Ela AA, Abido MA, Spea SR (2010) Optimal power flow using differential evolution algorithm. Electr Power Syst Res 80(7):878–885

    Article  Google Scholar 

  7. Tang WJ, Li MS, Wu QH, Saunders JR (2008) Bacterial foraging algorithm for optimal power flow in dynamic environments. IEEE Trans Circuits and Systems I: Regular Papers 55(8):2433–2442

    Article  MathSciNet  Google Scholar 

  8. Duman S, Güvenç U, Sönmez Y, Yörükeren N (2012) Optimal power flow using gravitational search algorithm. Energy Convers Manag 59:86–95

    Article  Google Scholar 

  9. C. A. Roa-Sepulveda, B. J. Pavez-Lazo, A solution to the optimal power flow using simulated annealing, Proc. IEEE Power Tech, vol. 2, pp. 5

  10. Bhattacharya A, Chattopadhyay PK (2010) Biogeography-based optimization for solution of optimal power flow problem. Proc. Electrical Engineering/Electronics Computer Telecommunications and Information Technology, Chaing Mai, pp 435–439

    Google Scholar 

  11. Abido MA (2002) Optimal power flow using Tabu search algorithm. Electric Power Components and Systems 30(5):469–483

    Article  Google Scholar 

  12. Surender Reddy S, Bijwe PR, Abhyankar AR (2014) Faster evolutionary algorithm based optimal power flow using incremental variables. International Journal of Electrical Power and Energy Systems 54:198–210

    Article  Google Scholar 

  13. Surender Reddy S, Bijwe PR (2016) Efficiency improvements in meta-heuristic algorithms to solve the optimal power flow problem. International Journal of Electrical Power and Energy Systems 82:288–302

    Article  Google Scholar 

  14. Lashkar Ara A, Kazemi A, Gahramani S, Behshad M (2012) Optimal reactive power flow using multi-objective mathematical programming. Scientia Iranica 19(6):1829–1836

    Article  Google Scholar 

  15. Liu X, Xu W (2010) Minimum emission dispatch constrained by stochastic wind power availability and cost. IEEE Trans Power Syst 25(3):1705–1713

    Article  Google Scholar 

  16. Abido MA (2004) Multiobjective optimal power flow using strength Pareto evolutionary algorithm. Universities Power Engineering Conference, Bristol, pp 457–461

    Google Scholar 

  17. M.A. Abido, Multiobjective particle swarm optimization for optimal power flow problem, 12th International Middle-East Power System Conference, Aswan, 2008, pp. 392–396

  18. Hazra J, Sinha AK (2011) A multi-objective optimal power flow using particle swarm optimization. European Transactions on Electrical Power 1(1):1028–1045

    Article  Google Scholar 

  19. Niknam T, Narimani MR, Aghaei J, Azizipanah-Abarghooee R (2011) Improved particle swarm optimization for multi-objective optimal power flow considering the cost, loss, emission and voltage stability index. IET Gereration, Transmission and Distribution 6(6):515–527

    Article  Google Scholar 

  20. Abido MA, Al-Ali NA (2012) Multi-objective optimal power flow using differential evolution. Arab J Sci Eng 37(4):991–1005

    Article  MATH  Google Scholar 

  21. Varadarajan M, Swarup KS (2008) Solving multi-objective optimal power flow using differential evolution. IET Gereration, Transmission and Distribution 2(5):720–730

    Article  Google Scholar 

  22. Basu M (2016) Multi-objective optimal reactive power dispatch using multi-objective differential evolution. Int J Electr Power Energy Syst 82:213–224

    Article  Google Scholar 

  23. Capitanescu F (2016) Critical review of recent advances and further developments needed in AC optimal power flow. Electr Power Syst Res 136:57–68

    Article  Google Scholar 

  24. Abaci K, Yamacli V (2016) Differential search algorithm for solving multi-objective optimal power flow problem. Int J Electr Power Energy Syst 79:1–10

    Article  Google Scholar 

  25. Daryani N, Hagh MT, Teimourzadeh S (2016) Adaptive group search optimization algorithm for multi-objective optimal power flow problem. Appl Soft Comput 38:1012–1024

    Article  Google Scholar 

  26. Chaib AE, Bouchekara HREH, Mehasni R, Abido MA (2016) Optimal power flow with emission and non-smooth cost functions using backtracking search optimization algorithm. Int J Electr Power Energy Syst 81:64–77

    Article  Google Scholar 

  27. Bouchekara HREH, Chaib AE, Abido MA, El-Sehiemy RA (2016) Optimal power flow using an improved colliding bodies optimization algorithm. Appl Soft Comput 42:119–131

    Article  Google Scholar 

  28. Ding T, Li C, Li F, Chen T, Liu R (2017) A bi-objective DC-optimal power flow model using linear relaxation-based second order cone programming and its Pareto frontier. Int J Electr Power Energy Syst 88:13–20

    Article  Google Scholar 

  29. M. Ding, H. Chen, N. Lin, S. Jing, F. Liu, X. Liang, W. Liu, Dynamic population artificial bee colony algorithm for multi-objective optimal power flow, Saudi Journal of Biological Sciences, 2017

  30. Zhang J, Tang Q, Li P, Deng D, Chen Y (2016) A modified MOEA/D approach to the solution of multi-objective optimal power flow problem. Appl Soft Comput 47:494–514

    Article  Google Scholar 

  31. Zhou J, Wang C, Li Y, Wang P, Li C, Lu P, Mo L (2017) A multi-objective multi-population ant colony optimization for economic emission dispatch considering power system security. Appl Math Model 45:684–704

    Article  MathSciNet  Google Scholar 

  32. Yuan X, Zhang B, Wang P, Liang J, Yuan Y, Huang Y, Lei X (2017) Multi-objective optimal power flow based on improved strength Pareto evolutionary algorithm. Energy 122:70–82

    Article  Google Scholar 

  33. Bai W, Eke I, Lee KY (2017) An improved artificial bee colony optimization algorithm based on orthogonal learning for optimal power flow problem. Control Eng Pract 61:163–172

    Article  Google Scholar 

  34. Surender Reddy S (2017) Optimizing energy and demand response programs using multi-objective optimization. Electr Eng 99(1):397–406

    Article  Google Scholar 

  35. Roy PK, Ghoshal SP, Thakur SS (2010) Combined economic and emission dispatch problems using biogeography-based optimization. Electr Eng 92(4):173–184

    Article  Google Scholar 

  36. J. Ning, B. Zhang, T. Liu, C. Zhang, An archive-based artificial bee colony optimization algorithm for multi-objective continuous optimization problem, Neural Computing and Applications, pp. 1–11, 2016

  37. Jia L, Cheng D, Chiu MS (2012) Pareto-optimal solutions based multi-objective particle swarm optimization control for batch processes. Neural Comput & Applic 21(6):1107–1116

    Article  Google Scholar 

  38. Reddy SS, Rathnam CS (2016) Optimal power flow using glowworm swarm optimization. Int J Electr Power Energy Syst 80:128–139

    Article  Google Scholar 

  39. K. Deb, Multi-objective optimization using evolutionary algorithms, John Wiley and Sons, 2001

  40. Sailaja Kumari M, Maheswarapu S (2010) Enhanced genetic algorithm based computation technique for multi-objective optimal power flow solution. Int J Electr Power Energy Syst 32(6):736–742

    Article  Google Scholar 

  41. Surender Reddy S, Abhyankar AR, Bijwe PR (2011) Reactive power price clearing using multi-objective optimization. Energy 36(5):3579–3589

    Article  Google Scholar 

  42. IEEE tutorial course on optimal power flow: solution techniques, requirements and challenges, 1996

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Surender Reddy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surender Reddy, S., Bijwe, P.R. Differential evolution-based efficient multi-objective optimal power flow. Neural Comput & Applic 31 (Suppl 1), 509–522 (2019). https://doi.org/10.1007/s00521-017-3009-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-3009-5

Keywords

Navigation