Skip to main content

Advertisement

Log in

Exploring differential evolution and particle swarm optimization to develop some symmetry-based automatic clustering techniques: application to gene clustering

  • ISCMI15
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In the current paper, we have developed two bio-inspired fuzzy clustering algorithms by incorporating the optimization techniques, namely differential evolution and particle swarm optimization. Both these clustering techniques can detect symmetrical-shaped clusters utilizing the established point symmetry-based distance measure. Both the proposed approaches are automatic in nature and can detect the number of clusters automatically from a given dataset. A symmetry-based cluster validity measure, F-Sym-index, is used as the objective function to be optimized in order to automatically determine the correct partitioning by both the approaches. The effectiveness of the proposed approaches is shown for automatically clustering some artificial and real-life datasets as well as for clustering some real-life gene expression datasets. The current paper presents a comparative analysis of some meta-heuristic-based clustering approaches, namely newly proposed two techniques and the already existing automatic genetic clustering techniques, VGAPS, GCUK, HNGA. The obtained results are compared with respect to some external cluster validity indices. Moreover, some statistical significance tests, as well as biological significance tests, are also conducted. Finally, results on gene expression datasets have been visualized by using some visualization tools, namely Eisen plot and cluster profile plot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. http://cmgm.stanford.edu/pbrown/sporulation.

  2. http://faculty.washington.edu/kayee/cluster.

  3. http://faculty.washington.edu/kayee/cluster.

  4. http://homes.esat.kuleuven.be/thijs/Work/Clustering.html.

  5. http://www.sciencemag.org/feature/data/984559.shl.

References

  1. Agustn-Blas LE, Salcedo-Sanz S, Jimnez-Fernndez S, Carro-Calvo L, Del Ser J, Portilla-Figueras JA (2012) A new grouping genetic algorithm for clustering problems. Expert Syst Appl 39(10):9695–9703

    Article  Google Scholar 

  2. Alam S, Dobbie G, Koh YS, Riddle P, Rehma SU (2014) Research on particle swarm optimization based clustering: a systematic review of literature and techniques. Swarm Evolut Comput 17:1–13

    Article  Google Scholar 

  3. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X, Powell JI, Yang L, Marti GE, Moore T, Hudson JJ, Lu L, Lewis DB, Tibshirani R, Sherlock G, Chan WC, Greiner TC, Weisenburger DD, Armitage JO, Warnke R, Levy R, Wilson W, Grever MR, Byrd JC, Botstein D, Brown PO, Staudt LM (2000) Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature 403(6769):503–511

    Article  Google Scholar 

  4. Ankerbrandt CA, Buckles BP, Petry FE (1990) Scene recognition using genetic algorithms with semantic nets. Pattern Recognit Lett 11:285–293

    Article  MATH  Google Scholar 

  5. Asuncion A, Newman DJ (2007) UCI machine learning repository. http://www.ics.uci.edu/~mlearn/MLRepository.html. Accessed 20 Dec 2016

  6. Bandyopadhyay S, Maulik U (2002) Genetic clustering for automatic evolution of clusters and application to image classification. Pattern Recognit 35(6):1197–1208

    Article  MATH  Google Scholar 

  7. Bandyopadhyay S, Saha S (2007) GAPS: a clustering method using a new point symmetry based distance measure. Pattern Recognit 40(12):3430–3451

    Article  MATH  Google Scholar 

  8. Ben-Hur A, Guyon I (2003) Detecting stable clusters using principal component analysis. Humana Press, Totowa

    Book  Google Scholar 

  9. Bentley JL, Weide BW, Yao AC (1980) Optimal expected-time algorithms for closest point problems. ACM Trans Math Softw 6(4):563–580

    Article  MathSciNet  MATH  Google Scholar 

  10. Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Plenum, New York

    Book  MATH  Google Scholar 

  11. Cai Z, Gong W, Ling CX, Zhang H (2011) A clustering-based differential evolution for global optimization. Appl Soft Comput 11(1):1363–1379

    Article  Google Scholar 

  12. Demsar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30

    MathSciNet  MATH  Google Scholar 

  13. Dorigo M, Stützle T (2004) Ant colony optimization. MIT Press, Cambridge

    MATH  Google Scholar 

  14. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95(25):14863–14868

    Article  Google Scholar 

  15. Everitt BS (1993) Cluster analysis, third edn. Halsted Press, New York

    MATH  Google Scholar 

  16. Friedman JH, Bently JL, Finkel RA (1977) An algorithm for finding best matches in logarithmic expected time. ACM Trans Math Softw 3(3):209–226

    Article  MATH  Google Scholar 

  17. Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32(200):675–701

    Article  MATH  Google Scholar 

  18. García S, Herrera F (2008) An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons. J Mach Learn Res 9:2677–2694

    MATH  Google Scholar 

  19. Goldberg DE (1989) Genet algorithms search, optimization and machine learning. Addison-Wesley, New York

    Google Scholar 

  20. He H, Tan Y (2012) A two-stage genetic algorithm for automatic clustering. Neurocomputing 81:49–59

    Article  Google Scholar 

  21. Horta D, de Andrade IC, Campello RJGB (2011) Evolutionary fuzzy clustering of relational data. Theor Comput Sci 412(42):5854–5870

    Article  MathSciNet  MATH  Google Scholar 

  22. Jain AK, Dubes RC (1988) Algorithms for clustering data. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  23. Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv 31(3):264–323

    Article  Google Scholar 

  24. Kao Y, Chen C-C (2014) Automatic clustering for generalised cell formation using a hybrid particle swarm optimisation. Int J Prod Res 52(12):3466–3484

    Article  Google Scholar 

  25. Kennedy J, Eberhart RC (2001) Swarm intelligence. Morgan Kaufmann Publishers Inc., San Francisco

    Google Scholar 

  26. Kuila P, Jana PK (2014) A novel differential evolution based clustering algorithm for wireless sensor networks. Appl Soft Comput 25:414–425

    Article  Google Scholar 

  27. Liu G, Li Y, Nie X, Zheng H (2012) A novel clustering-based differential evolution with 2 multi-parent crossovers for global optimization. Appl Soft Comput 12(2):663–681

    Article  Google Scholar 

  28. Liu Y, Xindong W, Shen Y (2011) Automatic clustering using genetic algorithms. Appl Math Comput 218(4):1267–1279

    MathSciNet  MATH  Google Scholar 

  29. Mangat V (2012) Survey on particle swarm optimization based clustering analysis. In: Swarm and evolutionary computation—international symposia, (SIDE) 2012 and EC 2012, Held in Conjunction with ICAISC 2012, Zakopane, Poland, April 29 May 3, 2012. Proceedings, pp 301–309

  30. Maulik U, Mukhopadhyay A, Bandyopadhyay S (2009) Combining pareto-optimal clusters using supervised learning for identifying co-expressed genes. BMC Bioinform 10(27)

  31. Maulik U, Saha I (2009) Modified differential evolution based fuzzy clustering for pixel classification in remote sensing imagery. Pattern Recognit 42(9):2135–2149

    Article  MATH  Google Scholar 

  32. Nemenyi P (1963) Distribution-free multiple comparisons. PhD thesis, Princeton University

  33. Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization. Swarm Intell 1(1):33–57

    Article  Google Scholar 

  34. Price K, Storn RM, Lampinen JA (2005) Differential evolution: a practical approach to global optimization (natural computing series). Springer, Secaucus

    MATH  Google Scholar 

  35. Rana S, Jasola S, Kumar R (2011) A review on particle swarm optimization algorithms and their applications to data clustering. Artif Intell Rev 35(3):211–222

    Article  Google Scholar 

  36. Ravi V, Aggarwal N, Chauhan N (2010) Differential evolution based fuzzy clustering. In: Swarm, evolutionary, and memetic computing—first international conference on swarm, evolutionary, and memetic computing, SEMCCO 2010, Chennai, India, December 16–18, 2010. Proceedings, pp 38–45

  37. Rousseeuw P (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20(1):53–65

    Article  MATH  Google Scholar 

  38. Saha S, Bandyopadhyay S (2009) A new point symmetry based fuzzy genetic clustering technique for automatic evolution of clusters. Inf Sci 179(19):3230–3246

    Article  MATH  Google Scholar 

  39. Saha S, Bandyopadhyay S (2008) Application of a new symmetry based cluster validity index for satellite image segmentation. IEEE Geosci Remote Sens Lett 5(2):166–170

    Article  Google Scholar 

  40. Sarkar S, Patra GR, Das S, Chaudhuri SS (2013) Fuzzy clustering of image pixels with a fitness-based adaptive differential evolution. In: Swarm, evolutionary, and memetic computing—4th international conference, SEMCCO 2013, Chennai, India, December 19–21, 2013, Proceedings, Part I, pp 179–188

  41. Sheng W, Swift S, Zhang L, Liu X (2005) A weighted sum validity function for clustering with a hybrid niching genetic algorithm. IEEE Trans Syst Man Cybern Part B Cybern 35(6):56–67

    Article  Google Scholar 

  42. Sibson R (1971) Mathematical taxonomy. Wiley, London

    MATH  Google Scholar 

  43. Su M-C, Chou C-H (2001) A modified version of the K-means algorithm with a distance based on cluster symmetry. IEEE Trans Pattern Anal Mach Intell 23(6):674–680

    Article  Google Scholar 

  44. Tvrdk J, Kiv I (2015) Hybrid differential evolution algorithm for optimal clustering. Appl Soft Comput 35:502–512

    Article  Google Scholar 

  45. Xie XL, Beni G (1991) A validity measure for fuzzy clustering. IEEE Trans Pattern Anal Mach Intell 13(8):841–847

    Article  Google Scholar 

  46. Yang X-S, Deb S (2012) Two-stage eagle strategy with differential evolution. IJBIC 4(1):1–5

    Article  Google Scholar 

  47. Yang X-S, Deb S (2014) Cuckoo search: recent advances and applications. CoRR, abs/1408.5316

  48. Zhang L, Ma M, Liu X, Sun C, Liu M, Zhou C (2006) Differential evolution fuzzy clustering algorithm based on kernel methods. In: Rough sets and knowledge technology, first international conference, RSKT 2006, Chongqing, China, July 24–26, 2006, Proceedings, pp 430–435

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sriparna Saha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, S., Das, R. Exploring differential evolution and particle swarm optimization to develop some symmetry-based automatic clustering techniques: application to gene clustering. Neural Comput & Applic 30, 735–757 (2018). https://doi.org/10.1007/s00521-016-2710-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2710-0

Keywords

Navigation