Skip to main content
Log in

Fuzzy classifier fusion: an application to reservoir facies identification

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

An application of classifier fusion technique is presented to improve the performance of automated reservoir facies identification system. The algorithm presented in this study uses three well-known classifiers, namely Bayesian, k-nearest neighbor (kNN), and support vector machine (SVM) to automatically identify four defined facies of Asmari Formation from log-derived amplitude versus offset (AVO) attributes. Fuzzy Sugeno integral (FSI) method is then employed to combine the outputs of three investigated classifiers and increase the consistency of reservoir facies identification process. The experimental results obtained from applying the presented algorithm on data related to three wells drilled in Asmari Formation provide evidence of the effectiveness of the proposed algorithm regarding true positive (TP), false positive (FP), and classification accuracy criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abdollahi fard IA, Braathen A, Mokhtari Mand Alavi SA (2006) Interaction of the Zagros Fold-Thrust Belt and the Arabian-type, deep-seated folds in the Abadan Plain and the Dezful Embayment, SW Iran. Pet Geosci 4:347–362

    Article  Google Scholar 

  2. Alavi M (2004) Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. Am J Sci 304:1–20

    Article  Google Scholar 

  3. Alsharhan AS, Nairn AEM (1997) Sedimentary basins and petroleum geology of the middle east. Elsevier, Amsterdam, New York

    Google Scholar 

  4. Chamberlain AK (1984) Surface gamma-ray logs: a correlation tool for frontier areas. Am Assoc Pet Geol Bull 68:1040–1043

    Google Scholar 

  5. Chopra S, Alexeev V, Xu Y (2003) Successful AVO and cross-plotting. CSEG Rec 28(09):1–12

    Google Scholar 

  6. Connolly P (1999) Elastic impedance. Lead Edge 18:438–452

    Article  Google Scholar 

  7. Crampin T (2007) Well log facies classification for improved regional exploration. Explor Geophys 39(2):115–123

    Article  Google Scholar 

  8. Duda RO, Hart PE, Stork DG (2002) Pattern classification, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  9. Dumay J, Fournier F (1988) Multivariate statistical analyses applied to seismic facies recognition. Geophysics 53:1151–1159

    Article  Google Scholar 

  10. Dypvik H (1993) Natural gamma activity—a possible aid in sedimentological fieldwork. Nor Geol Tidsskr 73:58–62

    Google Scholar 

  11. Goodway W (2001) AVO and Lam’e constants for rock parameterization and fluid detection. CSEG Rec 26:39–60

    Google Scholar 

  12. Han M, Zhao G, Reynolds A (2010) Application of em algorithms for seismic facices classification. J Comput Geosci 15:421–429. doi:10.1007/s10596-010-9212-4

    Article  MATH  Google Scholar 

  13. Jordan DW, Slatt RM, D’Agostino A, Gillespie RH (1991) Outcrop gamma ray logging: truck-mounted and hand-held scintillometer methods are useful for exploration, development, and training purposes. Paper SPE 22747, presented at the society of petroleum engineers, 66th annual technical conference and exhibition, Dallas, pp 841–852

  14. Kumar B, Kishore M (2006) Electrofacies classification—a critical approach. In: Sixth international conference and exposition on petroleum geophysics

  15. Larsen AL, Ulvmoen M, Omre H, Buland A (2006) Bayesian lithology/fluid prediction and simulation on the basis of a Markov-chain prior model. J Geophys 71:R69–R78

    Article  Google Scholar 

  16. Lee SH, Khargoria A, Datta-Gupta A (2002) Electrofacies characterization and permeability predictions in complex reservoirs. SPE Reserv Eval Eng 5:237–248

    Article  Google Scholar 

  17. Lipo W (2005) Support vector machines: theory and applications. Springer, Berlin

    MATH  Google Scholar 

  18. Lu S, McMechan GA (2004) Elastic impedance inversion of multichannel seismic data from unconsolidated sediments containing gas hydrate and free gas. Geophysics 69(1):164–179

    Article  Google Scholar 

  19. Mathieu PG, Rice GW (1969) Multivariate analysis used in the detection of stratigraphic anomalies from seismic data. Geophysics 34:507–515

    Article  Google Scholar 

  20. Mohri M, Rostamizadeh A, Talwalkar A (2012) Foundations of machine learning. The MIT Press, Cambridge

    MATH  Google Scholar 

  21. Mollajan A, Mehrgini B, Memarian H (2013) Zonal classification by pattern recognition methods: an example from Asmari formation (Manouri oil field, south of Iran). J Energy Explor Exploit 31(3):367–380

    Article  Google Scholar 

  22. Mollajan A, Mehrgini B, Memarian H (2015) A fusion approach to identify reservoir facies based on rock physics modeling. Arab J Geosci. doi:10.1007/s12517-015-1849-9

    Google Scholar 

  23. Moss B (1997) The partitioning of petrophysical data: a review. In: Lovell LL, Harvey RL (eds) Developments in petrophysics, vol 122. Geological Society Special Publication, London, pp 181–252

    Google Scholar 

  24. Motiei H (1993) Stratigraphy of Zagros in Treatise of geology of Iran, Iran Geological. Survey 1:281–289 (In Persian)

    Google Scholar 

  25. Myers KJ, Bristow CS (1989) Detailed sedimentology and gamma-ray log characteristics of a Namurian deltaic succeSSiOn. II. Gamma-ray logging. In: Whateley MKG, Pickering KT (eds) Deltar sites and traps for fossil fuels, vol 41. Geological society, London, pp 81–88

    Google Scholar 

  26. North CP, Boering M (1999) Spectral gamma-ray logging for facies discrimination in mixed fluvial-eolian successions: a cautionary tale. Bull Am Assoc Pet Geol 83:155–169

    Google Scholar 

  27. Paparozzi E, Grana D, Mancini S, Tarchiani C (2011) Seismic driven probabilistic classification of reservoir facies and static reservoir modeling. In: 73rd EAGE conference and exhibition incorporating SPE EUROPEC Vienna, Austria

  28. Quakenbush M, Shang B, Tuttle C (2006) Poisson impedance. Lead Edge 25(2):128–138

    Article  Google Scholar 

  29. Rao YH, Biswal AK (2004) Comparative study of AVO attributes for reservoir facies discrimination and porosity prediction. In: Fifth conference and exposition on petroleum geophysics, Hyderabad-2004, India, pp 498–502

  30. Reading HG (1996) Sedimentary environments and facies. Blackwell Scientific Publications, Oxford

    Google Scholar 

  31. Shakhnarovish G, Darrell T, Indyk P (2005) Nearest-neighbor methods in learning and vision: theory and practice. MIT Press, Boston

    Google Scholar 

  32. Sherkati S, Letouzey J (2004) Variation of structural style and basin evolution in the central Zagros (Izeh zone and Dezful Embayment), Iran. Mar Pet Geol 21:535–554

    Article  Google Scholar 

  33. Theodoridis S, Koutroumbos K (2002) Pattern classification, 2nd edn. Elsevier, San Diego

    Google Scholar 

  34. Woods K, Kegelmeyer WP, Bowyer K (1997) Combination of multiple classifiers using local accuracy estimates. IEEE Trans Pattern Anal Mach Intell 19(4):405–410

    Article  Google Scholar 

  35. Xu Y, Chopra S (2008) Deterministic mapping of reservoir heterogeneity in Athabasca oil sands using surface seismic data. Lead Edge 27(9):1186–1191

    Article  Google Scholar 

  36. Xu C, Torres-Verdin C (2014) Petrophysical rock classification in the Cotton Valley tight-gas sandstone reservoir with a clustering pore-system orthogonality matrix. Interpretation 2(1):13–23

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of University of Tehran for this research under Grant Number (22708/1/02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Mollajan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mollajan, A., Memarian, H. & Nabi-Bidhendi, M. Fuzzy classifier fusion: an application to reservoir facies identification. Neural Comput & Applic 30, 825–834 (2018). https://doi.org/10.1007/s00521-016-2690-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2690-0

Keywords

Navigation