Skip to main content
Log in

Multi-criteria group decision-making method based on interdependent inputs of single-valued trapezoidal neutrosophic information

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Single-valued trapezoidal neutrosophic numbers (SVTNNs) are very useful tools for describing complex information, because they are able to maintain the completeness of the information and describe it accurately and comprehensively. This paper develops a method based on the single-valued trapezoidal neutrosophic normalized weighted Bonferroni mean (SVTNNWBM) operator to address multi-criteria group decision-making (MCGDM) problems. First, the limitations of existing operations for SVTNNs are discussed, after which improved operations are defined. Second, a new comparison method based on score function is proposed. Then, the entropy-weighted method is established in order to obtain objective expert weights, and the SVTNNWBM operator is proposed based on the new operations of SVTNNs. Furthermore, a single-valued trapezoidal neutrosophic MCGDM method is developed. Finally, a numerical example and comparison analysis are conducted to verify the practicality and effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  MATH  Google Scholar 

  2. Derrac J, Chiclana F, Garcia S, Herrera F (2016) Evolutionary fuzzy k-nearest neighbors algorithm using interval-valued fuzzy sets. Inf Sci 329:144–163

    Article  Google Scholar 

  3. Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20(1):87–96

    Article  MATH  Google Scholar 

  4. Atanassov KT, Gargov G (1989) Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst 31(3):343–349

    Article  MathSciNet  MATH  Google Scholar 

  5. Wan S, Lin L-L, Dong J (2016) MAGDM based on triangular Atanassov’s intuitionistic fuzzy information aggregation. Neural Comput Appl. doi:10.1007/s00521-016-2196-9

    Google Scholar 

  6. Zhou H, Wang J-Q, Zhang H-Y (2016) Multi-criteria decision-making approaches based on distance measures for linguistic hesitant fuzzy sets. J Oper Res Soc. doi:10.1057/jors.2016.41

    Google Scholar 

  7. Beg I, Rashid T (2014) Group decision making using intuitionistic hesitant fuzzy sets. Int J Fuzzy Log Intell Syst 14(3):181–187

    Article  Google Scholar 

  8. Liu H-W, Wang G-J (2007) Multi-criteria decision making methods based on intuitionistic fuzzy sets. Eur J Oper Res 179(1):220–233

    Article  MATH  Google Scholar 

  9. Xu Z-S (2012) Intuitionistic fuzzy multi-attribute decision making: an interactive method. IEEE Trans Fuzzy Syst 20(3):514–525

    Article  Google Scholar 

  10. Wang J-Q, Han Z-Q, Zhang H-Y (2014) Multi-criteria group decision-making method based on intuitionistic interval fuzzy information. Group Decis Negot 23(4):715–733

    Article  Google Scholar 

  11. Amorim P, Curcio E, Almada-Lobo B, Barbosa-Póvoa APFD, Grossmann IE (2016) Supplier selection in the processed food industry under uncertainty. Eur J Oper Res 252(3):801–814

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen S-M, Cheng S-H, Chiou C-H (2016) Fuzzy multi-attribute group decision making based on intuitionistic fuzzy sets and evidential reasoning methodology. Inf Fusion 27:215–227

    Article  Google Scholar 

  13. Liu P-D, Liu X (2016) The neutrosophic number generalized weighted power averaging operator and its application in multiple attribute group decision making. Int J Mach Learn Cybern. doi:10.1007/s13042-016-0508-0

    Google Scholar 

  14. Wu J, Xiong R, Chiclana F (2016) Uninorm trust propagation and aggregation methods for group decision making in social network with four tuple information. Knowl Based Syst 96(2):29–39

    Google Scholar 

  15. Wang J-Q, Nie R-R, Zhang H-Y (2013) New operators on triangular intuitionistic fuzzy numbers and their applications in system fault analysis. Inf Sci 251:79–95

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang J-Q (2008) Overview on fuzzy multi-criteria decision-making approach. Control Decis 23(6):002

    MathSciNet  Google Scholar 

  17. Wan S-P (2013) Power average operators of trapezoidal intuitionistic fuzzy numbers and application to multi-attribute group decision making. Appl Math Model 37(6):4112–4126

    Article  MathSciNet  MATH  Google Scholar 

  18. Smarandache F (1998) Neutrosophy: neutrosophic probability, set, and logic. American Research Press, Rehoboth, pp 1–105

    MATH  Google Scholar 

  19. Smarandache F (1999) A unifying field in logics: neutrosophic logic neutrosophy, neutrosophic set, neutrosophic probability. American Research Press, Rehoboth, pp 1–141

    MATH  Google Scholar 

  20. Smarandache F (2008) Neutrosophic set—a generalization of the intuitionistic fuzzy set. Int J Pure Appl Math 24(3):38–42

    MathSciNet  Google Scholar 

  21. Deli I, Şubaş Y (2015) Some weighted geometric operators with SVTrN-numbers and their application to multi-criteria decision making problems. J Intell Fuzzy Syst. doi:10.3233/jifs-151677

    MATH  Google Scholar 

  22. El-Hefenawy N, Metwally M-A, Ahmed Z-M, El-Henawy I-M (2016) A review on the applications of neutrosophic sets. J Comput Theor Nanosci 13(1):936–944

    Article  Google Scholar 

  23. Şubaş Y (2015) Neutrosophic numbers and their application to multi-attribute decision making problems. Unpublished Masters Thesis, 7 Aralık University, Graduate School of Natural and Applied Science

  24. Liu C, Luo Y (2016) Correlated aggregation operators for simplified neutrosophic set and their application in multi-attribute group decision making. J Intell Fuzzy Syst 30(3):1755–1761

    Article  MATH  Google Scholar 

  25. Wu X-H, Wang J, Peng J-J, Chen X-H (2016) Cross-entropy and prioritized aggregation operator with simplified neutrosophic sets and their application in multi-criteria decision-making problems. Int J Fuzzy Syst. doi:10.1007/s40815-016-0180-2

    Google Scholar 

  26. Ji P, Zhang H-Y, Wang J-Q (2016) A projection-based TODIM method under multi-valued neutrosophic environments and its application in personnel selection. Neural Comput Appl. doi:10.1007/s00521-016-2436-z

    Google Scholar 

  27. Liu P-D, Li H (2015) Multiple attribute decision-making method based on some normal neutrosophic Bonferroni mean operators. Neural Comput Appl 25(7–8):1–16

    Google Scholar 

  28. Broumi S, Talea M, Bakali A, Smarandache F (2016) Single valued neutrosophic graphs. J New Theory 10:86–101

    Google Scholar 

  29. Broumi S, Talea M, Bakali A, Smarandache F (2016) Interval valued neutrosophic graphs. Publ Soc Math Uncertain 10:5

    Google Scholar 

  30. Broumi S, Deli I, Smarandache F (2014) Interval valued neutrosophic parameterized soft set theory and its decision making. Appl Soft Comput 28(4):109–113

    MATH  Google Scholar 

  31. Şahin R, Liu P (2016) Correlation coefficient of single-valued neutrosophic hesitant fuzzy sets and its applications in decision making. Neural Comput Appl. doi:10.1007/s00521-015-2163-x

    Google Scholar 

  32. Tian Z-P, Wang J, Wang J-Q, Zhang H-Y (2016) An improved MULTIMOORA approach for multi-criteria decision-making based on interdependent inputs of simplified neutrosophic linguistic information. Neural Comput Appl. doi:10.1007/s00521-016-2378-5

    Google Scholar 

  33. Tian Z-P, Wang J, Wang J-Q, Zhang H-Y (2016) Simplified neutrosophic linguistic multi-criteria group decision-making approach to green product development. Group Decis Negot. doi:10.1007/s10726-016-9479-5

    Google Scholar 

  34. Tian Z-P, Wang J, Zhang H-Y, Wang J-Q (2016) Multi-criteria decision-making based on generalized prioritized aggregation operators under simplified neutrosophic uncertain linguistic environment. Int J Mach Learn Cybern. doi:10.1007/s13042-016-0552-9

    Google Scholar 

  35. Ma Y-X, Wang J-Q, Wang J, Wu X-H (2016) An interval neutrosophic linguistic multi-criteria group decision-making method and its application in selecting medical treatment options. Neural Comput Appl. doi:10.1007/s00521-016-2203-1

    Google Scholar 

  36. Chan H-K, Wang X-J, Raffoni A (2014) An integrated approach for green design: life-cycle, fuzzy AHP and environmental management accounting. Br Account Rev 46(4):344–360

    Article  Google Scholar 

  37. Chan H-K, Wang X-J, White GRT, Yip N (2013) An extended fuzzy-AHP approach for the evaluation of green product designs. IEEE Trans Eng Manag 60(2):327–339

    Article  Google Scholar 

  38. Ye J (2015) Some weighted aggregation operators of trapezoidal neutrosophic numbers and their multiple attribute decision making method. http://www.gallup.unm.edu/~smarandache/SomeWeightedAggregationOperators.pdf

  39. Deli I, Şubaş Y (2016) A ranking method of single valued neutrosophic numbers and its applications to multi-attribute decision making problems. Int J Mach Learn Cybern. doi:10.1007/s13042-016-0505-3

    Google Scholar 

  40. Broumi S, Smarandache F (2014) Single valued neutrosophic trapezoid linguistic aggregation operators based multi-attribute decision making. Bull Pure Appl Sci Math Stat 33(2):135–155

    Article  Google Scholar 

  41. Said B, Smarandache F (2016) Multi-attribute decision making based on interval neutrosophic trapezoid linguistic aggregation operators. Handb Res Gen Hybrid Set Struct Appl Soft Comput. doi:10.5281/zenodo.49136

    Google Scholar 

  42. Tian Z-P, Wang J, Wang J-Q, Chen X-H (2015) Multi-criteria decision-making approach based on gray linguistic weighted Bonferroni mean operator. Int Trans Oper Res. doi:10.1111/itor.12220

    Google Scholar 

  43. Ye J (2015) Multiple attribute group decision making based on interval neutrosophic uncertain linguistic variables. Int J Mach Learn Cybern. doi:10.1007/s13042-015-0382-1

    Google Scholar 

  44. Bonferroni C (1950) Sulle medie multiple di potenze. Bolletino dell`Unione Matematica Italiana 5:267–270

    MathSciNet  MATH  Google Scholar 

  45. Li D, Zeng W, Li J (2016) Geometric Bonferroni mean operators. Int J Intell Syst. doi:10.1002/int.21822

    Google Scholar 

  46. Liu P, Zhang L, Liu X, Wang P (2016) Multi-valued neutrosophic number Bonferroni mean operators with their applications in multiple attribute group decision making. Int J Inf Technol Decis Mak. doi:10.1142/s0219622016500346

    Google Scholar 

  47. Liu P-D, Jin F (2012) The trapezoid fuzzy linguistic Bonferroni mean operators and their application to multiple attribute decision making. Sci Iran 19(6):1947–1959

    Article  MathSciNet  Google Scholar 

  48. Zhu W-Q, Liang P, Wang L-J, Hou Y-R (2015) Triangular fuzzy Bonferroni mean operators and their application to multiple attribute decision making. J Intell Fuzzy Syst 29(4):1265–1272

    Article  MathSciNet  MATH  Google Scholar 

  49. Chen Z-S, Chin K-S, Li Y-L, Yang Y (2016) On generalized extended Bonferroni means for decision making. IEEE Trans Fuzzy Syst. doi:10.1109/tfuzz.2016.2540066

    Google Scholar 

  50. Zhang H-Y, Ji P, Wang J, Chen X-H (2017) A novel decision support model for satisfactory restaurants utilizing social information: a case study of TripAdvisor.com. Tour Manag 59: 281–297

    Article  Google Scholar 

  51. Dubois D, Prade H (1983) Ranking fuzzy numbers in the setting of possibility theory. Inf Sci 30(3):183–224

    Article  MathSciNet  MATH  Google Scholar 

  52. Wang H-B, Smarandache F, Zhang Y, Sunderraman R (2010) Single valued neutrosophic sets. Multispace Multistruct 4:410–413

    MATH  Google Scholar 

  53. Deli I, Şubaş Y (2014) Single valued neutrosophic numbers and their applications to multi-criteria decision making problem. viXra preprint viXra 1412.0012

  54. Xu Z-S, Yager R-R (2011) Intuitionistic fuzzy Bonferroni means. IEEE Trans Syst Man Cybern B (Cybern) 41(2):568–578

    Article  Google Scholar 

  55. Zhou W, He J-M (2012) Intuitionistic fuzzy normalized weighted Bonferroni mean and its application in multi-criteria decision making. J Appl Math 1110-757x:1–16

    Google Scholar 

  56. Shannon C-E (2001) A mathematical theory of communication. ACM SIGMOBILE Mob Comput Commun Rev 5(1):3–55

    Article  MathSciNet  Google Scholar 

  57. López-de-Ipiña K, Solé-Casals J, Faundez-Zanuy M, Calvo P-M, Sesa E, Martinez de Lizarduy U, Bergareche A (2016) Selection of entropy based features for automatic analysis of essential tremor. Entropy 18(5):184

    Article  MATH  Google Scholar 

  58. Wei C, Yan F, Rodríguez R-M Entropy measures for hesitant fuzzy sets and their application in multi-criteria decision making. J Intell Fuzzy Syst (Preprint) 1–13

  59. Verma R, Maheshwari S (2016) A new measure of divergence with its application to multi-criteria decision making under fuzzy environment. Neural Comput Appl. doi:10.1007/s00521-016-2311-y

    Google Scholar 

  60. Kumar A, Peeta S (2015) Entropy weighted average method for the determination of a single representative path flow solution for the static user equilibrium traffic assignment problem. Transp Res B Methodol 71(4):213–229

    Article  Google Scholar 

  61. Yue Z (2014) TOPSIS-based group decision making methodology in intuitionistic fuzzy setting. Inf Sci 277(2):141–153

    Article  MathSciNet  MATH  Google Scholar 

  62. Wang J-H, Hao J-Y (2006) A new version of 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans Fuzzy Syst 14(3):435–445

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 71571193).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-qiang Wang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Appendices

Appendix 1

Proof

In the following steps, Eq. (15) will be proved using mathematical induction on n.

  1. 1.

    The following equation must be proved first:

    $$\begin{aligned} {\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{n}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left( {\tilde{a}_{i}^{p} \otimes \tilde{a}_{j}^{q} } \right) &=\, \left\langle {\left[ {{\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{n}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}a_{i1}^{p} a_{j1}^{q} ,{\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{n}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}a_{i2}^{p} a_{j2}^{q} ,{\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{n}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}a_{i3}^{p} a_{j3}^{q} ,{\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{n}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}a_{i4}^{p} a_{j4}^{q} } \right],} \right. \hfill \\ &\qquad \left( {\frac{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{n}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]\left( {T_{{\tilde{a}_{i} }} } \right)^{p} \left( {T_{{\tilde{a}_{j} }} } \right)^{q} }}{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{n}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]}},} \right. \hfill \\ &\qquad \frac{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{n}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]\left( {1 - I_{{\tilde{a}_{i} }} } \right)^{p} \left( {1 - I_{{\tilde{a}_{j} }} } \right)^{q} }}{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{n}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]}}, \hfill \\ &\qquad\left. {\left. { \frac{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{n}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]\left( {1 - F_{{\tilde{a}_{i} }} } \right)^{p} \left( {1 - F_{{\tilde{a}_{j} }} } \right)^{q} }}{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{n}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} +a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]}}} \right)}\right\rangle \hfill \\ \end{aligned}$$
    (26)
    1. (a)

      Utilizing the operations for SVTNNs and mathematical induction on n, we have

      $$\tilde{a}_{i}^{p} = \left\langle {\left[ {a_{i1}^{p} ,a_{i2}^{p} ,a_{i3}^{p} ,a_{i4}^{p} } \right],\left( {\left( {T_{{\tilde{a}_{i} }} } \right)^{p} ,1 - \left( {1 - I_{{\tilde{a}_{i} }} } \right)^{p} ,1 - \left( {1 - F_{{\tilde{a}_{i} }} } \right)^{p} } \right)} \right\rangle ,$$
      $$\tilde{a}_{j}^{q} = \left\langle {\left[ {a_{j1}^{q} ,a_{j2}^{q} ,a_{j3}^{q} ,a_{j4}^{q} } \right],\left( {\left( {T_{{\tilde{a}_{j} }} } \right)^{q} ,1 - \left( {1 - I_{{\tilde{a}_{j} }} } \right)^{q} ,1 - \left( {1 - F_{{\tilde{a}_{j} }} } \right)^{q} } \right)} \right\rangle ,$$
      $$\tilde{a}_{i}^{p} \otimes \tilde{a}_{j}^{q} = \left\langle {\left[ {a_{i1}^{p} a_{j1}^{q} ,a_{i2}^{p} a_{j2}^{q} ,a_{i3}^{p} a_{j3}^{q} ,a_{i4}^{p} a_{j4}^{q} } \right],\left( {\begin{array}{*{20}l} {\left( {T_{{\tilde{a}_{i} }} } \right)^{p} \left( {T_{{\tilde{a}_{j} }} } \right)^{q} ,1 - \left( {1 - I_{{\tilde{a}_{i} }} } \right)^{p} \left( {1 - I_{{\tilde{a}_{j} }} } \right)^{q} ,} \hfill \\ {1 - \left( {1 - F_{{\tilde{a}_{i} }} } \right)^{p} \left( {1 - F_{{\tilde{a}_{j} }} } \right)^{q} } \hfill \\ \end{array} } \right)} \right\rangle$$

      When n = 2, the following equation can be calculated:\(\begin{aligned} {\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{2}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left( {\tilde{a}_{i}^{p} \otimes \tilde{a}_{j}^{q} } \right) &=\, \frac{{w_{1} w_{2} }}{{1 - w_{1} }}\left( {\tilde{a}_{1}^{p} \otimes \tilde{a}_{2}^{q} } \right) + \frac{{w_{2} w_{1} }}{{1 - w_{2} }}\left( {\tilde{a}_{2}^{p} \otimes \tilde{a}_{1}^{q} } \right) \hfill \\ &= \,\left\langle {\left[ {{\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{2}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}a_{i1}^{p} a_{j1}^{q} ,{\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{2}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}a_{i2}^{p} a_{j2}^{q} ,{\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{2}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}a_{i3}^{p} a_{j3}^{q} ,{\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{2}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}a_{i4}^{p} a_{j4}^{q} } \right],} \right. \hfill \\ &\qquad \left( {\frac{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{2}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]\left( {T_{{\tilde{a}_{i} }} } \right)^{p} \left( {T_{{\tilde{a}_{j} }} } \right)^{q} }}{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{2}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]}},} \right. \hfill \\ &\qquad \frac{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{2}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]\left( {1 - I_{{\tilde{a}_{i} }} } \right)^{p} \left( {1 - I_{{\tilde{a}_{j} }} } \right)^{q} }}{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{2}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]}}, \hfill \\ &\qquad\left. {\left. { \frac{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{2}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]\left( {1 - F_{{\tilde{a}_{i} }} } \right)^{p} \left( {1 - F_{{\tilde{a}_{j} }} } \right)^{q} }}{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{2}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]}}} \right)} \right\rangle . \hfill \\ \end{aligned}\).In other words, when n = 2, Eq. (26) is true.

    2. (b)

      Suppose that when n = k, Eq. (26) is true. That is,

      $$\begin{aligned} {\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{k}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left( {\tilde{a}_{i}^{p} \otimes \tilde{a}_{j}^{q} } \right) &=\, \left\langle {\left[ {{\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{k}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}a_{i1}^{p} a_{j1}^{q} ,{\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{k}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}a_{i2}^{p} a_{j2}^{q} ,{\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{k}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}a_{i3}^{p} a_{j3}^{q} ,{\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{k}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}a_{i4}^{p} a_{j4}^{q} } \right],} \right. \hfill \\ &\qquad \left( {\frac{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{k}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]\left( {T_{{\tilde{a}_{i} }} } \right)^{p} \left( {T_{{\tilde{a}_{j} }} } \right)^{q} }}{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{k}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]}},} \right. \hfill \\ &\qquad \frac{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{k}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]\left( {1 - I_{{\tilde{a}_{i} }} } \right)^{p} \left( {1 - I_{{\tilde{a}_{j} }} } \right)^{q} }}{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{k}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]}}, \hfill \\ &\qquad\left. {\left. {\frac{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{k}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]\left( {1 - F_{{\tilde{a}_{i} }} } \right)^{p} \left( {1 - F_{{\tilde{a}_{j} }} } \right)^{q} }}{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{k}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]}}} \right)} \right\rangle \hfill \\ \end{aligned}$$
      (27)

      Then, when n = k + 1, the following result can be obtained:

      $${\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{k + 1}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left({\tilde{a}_{i}^{p} \otimes \tilde{a}_{j}^{q} } \right) = {\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{k}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left( {\tilde{a}_{i}^{p} \otimes \tilde{a}_{j}^{q} } \right) + \mathop \oplus \limits_{i = 1}^{k} \frac{{w_{i} w_{k + 1} }}{{1 - w_{i} }}\left( {\tilde{a}_{i}^{p} \otimes \tilde{a}_{k + 1}^{q} } \right) + \mathop \oplus \limits_{j = 1}^{k} \frac{{w_{k + 1} w_{j} }}{{1 - w_{k + 1} }}\left( {\tilde{a}_{k + 1}^{p} \otimes \tilde{a}_{j}^{q} } \right).$$
      (28)

      Next, the following equation must be proved:

      $$\begin{aligned} \mathop \oplus \limits_{i = 1}^{k} \frac{{w_{i} w_{k + 1} }}{{1 - w_{i} }}\left( {\tilde{a}_{i}^{p} \otimes \tilde{a}_{k + 1}^{q} } \right) = \left\langle {\left[ {\mathop \oplus \limits_{i = 1}^{k} \frac{{w_{i} w_{k + 1} }}{{1 - w_{i} }}\left( {a_{i1}^{p} \otimes a_{k + 1,1}^{q} } \right),\mathop \oplus \limits_{i = 1}^{k} \frac{{w_{i} w_{k + 1} }}{{1 - w_{i} }}\left( {a_{i2}^{p} \otimes a_{k + 1,2}^{q} } \right),\mathop \oplus \limits_{i = 1}^{k} \frac{{w_{i} w_{k + 1} }}{{1 - w_{i} }}\left( {a_{i3}^{p} \otimes a_{k + 1,3}^{q} } \right),\mathop \oplus \limits_{i = 1}^{k} \frac{{w_{i} w_{k + 1} }}{{1 - w_{i} }}\left( {a_{i4}^{p} \otimes a_{k + 1,4}^{q} } \right)} \right],} \right. \hfill \\ \quad \left( {\frac{{\mathop \oplus \limits_{i = 1}^{k} \frac{1}{2}\frac{{w_{i} w_{k + 1} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{k + 1,3}^{q} - a_{i2}^{p} \otimes a_{k + 1,2}^{q} + a_{i4}^{p} \otimes a_{k + 1,4}^{q} - a_{i1}^{p} \otimes a_{k + 1,1}^{q} } \right]\left( {T_{{\tilde{a}_{i} }} } \right)^{P} \left( {T_{{\tilde{a}_{k + 1} }} } \right)^{q} }}{{\mathop \oplus \limits_{i = 1}^{k} \frac{1}{2}\frac{{w_{i} w_{k + 1} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{k + 1,3}^{q} - a_{i2}^{p} \otimes a_{k + 1,2}^{q} + a_{i4}^{p} \otimes a_{k + 1,4}^{q} - a_{i1}^{p} \otimes a_{k + 1,1}^{q} } \right]}},} \right. \hfill \\ \quad \frac{{\mathop \oplus \limits_{i = 1}^{k} \frac{1}{2}\frac{{w_{i} w_{k + 1} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{k + 1,3}^{q} - a_{i2}^{p} \otimes a_{k + 1,2}^{q} + a_{i4}^{p} \otimes a_{k + 1,4}^{q} - a_{i1}^{p} \otimes a_{k + 1,1}^{q} } \right]\left( {1 - I_{{\tilde{a}_{i} }} } \right)^{P} \left( {1 - I_{{\tilde{a}_{k + 1} }} } \right)^{q} }}{{\mathop \oplus \limits_{i = 1}^{k} \frac{1}{2}\frac{{w_{i} w_{k + 1} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{k + 1,3}^{q} - a_{i2}^{p} \otimes a_{k + 1,2}^{q} + a_{i4}^{p} \otimes a_{k + 1,4}^{q} - a_{i1}^{p} \otimes a_{k + 1,1}^{q} } \right]}}, \hfill \\ \quad \left. {\left. {\frac{{\mathop \oplus \limits_{i = 1}^{k} \frac{1}{2}\frac{{w_{i} w_{k + 1} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{k + 1,3}^{q} - a_{i2}^{p} \otimes a_{k + 1,2}^{q} + a_{i4}^{p} \otimes a_{k + 1,4}^{q} - a_{i1}^{p} \otimes a_{k + 1,1}^{q} } \right]\left( {1 - F_{{\tilde{a}_{i} }} } \right)^{P} \left( {1 - F_{{\tilde{a}_{k + 1} }} } \right)^{q} }}{{\mathop \oplus \limits_{i = 1}^{k} \frac{1}{2}\frac{{w_{i} w_{k + 1} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{k + 1,3}^{q} - a_{i2}^{p} \otimes a_{k + 1,2}^{q} + a_{i4}^{p} \otimes a_{k + 1,4}^{q} - a_{i1}^{p} \otimes a_{k + 1,1}^{q} } \right]}}} \right)} \right\rangle . \hfill \\ \end{aligned}$$
      (29)

      In the following steps, Eq. (29) will be proved using mathematical induction on k.

    1. (i)

      When k = 2, the following result can be calculated:

      $$\begin{aligned} \mathop \oplus \limits_{i = 1}^{2} \frac{{w_{i} w_{3} }}{{1 - w_{i} }}\left( {\tilde{a}_{i}^{p} \otimes \tilde{a}_{3}^{q} } \right) = \frac{{w_{1} w_{3} }}{{1 - w_{1} }}\left( {\tilde{a}_{1}^{p} \otimes \tilde{a}_{3}^{q} } \right) + \frac{{w_{2} w_{3} }}{{1 - w_{2} }}\left( {\tilde{a}_{2}^{p} \otimes \tilde{a}_{3}^{q} } \right) \hfill \\ = \left\langle {\left[ {\mathop \oplus \limits_{i = 1}^{2} \frac{{w_{i} w_{3} }}{{1 - w_{i} }}\left( {a_{i1}^{p} \otimes a_{3,1}^{q} } \right),\mathop \oplus \limits_{i = 1}^{2} \frac{{w_{i} w_{3} }}{{1 - w_{i} }}\left( {a_{i2}^{p} \otimes a_{3,2}^{q} } \right),\mathop \oplus \limits_{i = 1}^{2} \frac{{w_{i} w_{3} }}{{1 - w_{i} }}\left( {a_{i3}^{p} \otimes a_{3,3}^{q} } \right),\mathop \oplus \limits_{i = 1}^{2} \frac{{w_{i} w_{3} }}{{1 - w_{i} }}\left( {a_{i4}^{p} \otimes a_{3,4}^{q} } \right)} \right],} \right. \hfill \\ \left( {\frac{{\mathop \oplus \limits_{i = 1}^{2} \frac{1}{2}\frac{{w_{i} w_{3} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{3,3}^{q} - a_{i2}^{p} \otimes a_{3,2}^{q} + a_{i4}^{p} \otimes a_{3,4}^{q} - a_{i1}^{p} \otimes a_{3,1}^{q} } \right]\left( {T_{{\tilde{a}_{i} }} } \right)^{P} \left( {T_{{\tilde{a}_{3} }} } \right)^{q} }}{{\mathop \oplus \limits_{i = 1}^{2} \frac{1}{2}\frac{{w_{i} w_{3} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{3,3}^{q} - a_{i2}^{p} \otimes a_{3,2}^{q} + a_{i4}^{p} \otimes a_{3,4}^{q} - a_{i1}^{p} \otimes a_{3,1}^{q} } \right]}},} \right. \hfill \\ \frac{{\mathop \oplus \limits_{i = 1}^{2} \frac{1}{2}\frac{{w_{i} w_{3} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{3,3}^{q} - a_{i2}^{p} \otimes a_{3,2}^{q} + a_{i4}^{p} \otimes a_{3,4}^{q} - a_{i1}^{p} \otimes a_{3,1}^{q} } \right]\left( {1 - I_{{\tilde{a}_{i} }} } \right)^{P} \left( {1 - I_{{\tilde{a}_{3} }} } \right)^{q} }}{{\mathop \oplus \limits_{i = 1}^{2} \frac{1}{2}\frac{{w_{i} w_{3} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{3,3}^{q} - a_{i2}^{p} \otimes a_{3,2}^{q} + a_{i4}^{p} \otimes a_{3,4}^{q} - a_{i1}^{p} \otimes a_{3,1}^{q} } \right]}}, \hfill \\ \left. {\left. {\frac{{\mathop \oplus \limits_{i = 1}^{2} \frac{1}{2}\frac{{w_{i} w_{3} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{3,3}^{q} - a_{i2}^{p} \otimes a_{3,2}^{q} + a_{i4}^{p} \otimes a_{3,4}^{q} - a_{i1}^{p} \otimes a_{3,1}^{q} } \right]\left( {1 - F_{{\tilde{a}_{i} }} } \right)^{P} \left( {1 - F_{{\tilde{a}_{3} }} } \right)^{q} }}{{\mathop \oplus \limits_{i = 1}^{2} \frac{1}{2}\frac{{w_{i} w_{3} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{3,3}^{q} - a_{i2}^{p} \otimes a_{3,2}^{q} + a_{i4}^{p} \otimes a_{3,4}^{q} - a_{i1}^{p} \otimes a_{3,1}^{q} } \right]}}} \right)} \right\rangle . \hfill \\ \end{aligned}$$

      That is, when k = 2, Eq. (29) is true.

    2. (ii)

      Suppose that when k = l, Eq. (29) is true. That is,

      $$\begin{aligned} \mathop \oplus \limits_{i = 1}^{l} \frac{{w_{i} w_{l + 1} }}{{1 - w_{i} }}\left( {\tilde{a}_{i}^{p} \otimes \tilde{a}_{l + 1}^{q} } \right) = \left\langle {\left[ {\mathop \oplus \limits_{i = 1}^{l} \frac{{w_{i} w_{l + 1} }}{{1 - w_{i} }}\left( {a_{i1}^{p} \otimes a_{l + 1,1}^{q} } \right),\mathop \oplus \limits_{i = 1}^{l} \frac{{w_{i} w_{l + 1} }}{{1 - w_{i} }}\left( {a_{i2}^{p} \otimes a_{l + 1,2}^{q} } \right),\mathop \oplus \limits_{i = 1}^{l} \frac{{w_{i} w_{l + 1} }}{{1 - w_{i} }}\left( {a_{i3}^{p} \otimes a_{l + 1,3}^{q} } \right),\mathop \oplus \limits_{i = 1}^{l} \frac{{w_{i} w_{l + 1} }}{{1 - w_{i} }}\left( {a_{i4}^{p} \otimes a_{l + 1,4}^{q} } \right)} \right],} \right. \hfill \\ \quad \left( {\frac{{\mathop \oplus \limits_{i = 1}^{l} \frac{1}{2}\frac{{w_{i} w_{l + 1} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{l + 1,3}^{q} - a_{i2}^{p} \otimes a_{l + 1,2}^{q} + a_{i4}^{p} \otimes a_{l + 1,4}^{q} - a_{i1}^{p} \otimes a_{l + 1,1}^{q} } \right]\left( {T_{{\tilde{a}_{i} }} } \right)^{P} \left( {T_{{\tilde{a}_{l + 1} }} } \right)^{q} }}{{\mathop \oplus \limits_{i = 1}^{l} \frac{1}{2}\frac{{w_{i} w_{l + 1} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{l + 1,3}^{q} - a_{i2}^{p} \otimes a_{l + 1,2}^{q} + a_{i4}^{p} \otimes a_{l + 1,4}^{q} - a_{i1}^{p} \otimes a_{l + 1,1}^{q} } \right]}},} \right. \hfill \\ \quad \frac{{\mathop \oplus \limits_{i = 1}^{l} \frac{1}{2}\frac{{w_{i} w_{l + 1} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{l + 1,3}^{q} - a_{i2}^{p} \otimes a_{l + 1,2}^{q} + a_{i4}^{p} \otimes a_{l + 1,4}^{q} - a_{i1}^{p} \otimes a_{l + 1,1}^{q} } \right]\left( {1 - I_{{\tilde{a}_{i} }} } \right)^{P} \left( {1 - I_{{\tilde{a}_{l + 1} }} } \right)^{q} }}{{\mathop \oplus \limits_{i = 1}^{l} \frac{1}{2}\frac{{w_{i} w_{l + 1} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{l + 1,3}^{q} - a_{i2}^{p} \otimes a_{l + 1,2}^{q} + a_{i4}^{p} \otimes a_{l + 1,4}^{q} - a_{i1}^{p} \otimes a_{l + 1,1}^{q} } \right]}}, \hfill \\ \left. {\left. {\quad \frac{{\mathop \oplus \limits_{i = 1}^{l} \frac{1}{2}\frac{{w_{i} w_{l + 1} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{l + 1,3}^{q} - a_{i2}^{p} \otimes a_{l + 1,2}^{q} + a_{i4}^{p} \otimes a_{l + 1,4}^{q} - a_{i1}^{p} \otimes a_{l + 1,1}^{q} } \right]\left( {1 - F_{{\tilde{a}_{i} }} } \right)^{P} \left( {1 - F_{{\tilde{a}_{l + 1} }} } \right)^{q} }}{{\mathop \oplus \limits_{i = 1}^{l} \frac{1}{2}\frac{{w_{i} w_{l + 1} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{l + 1,3}^{q} - a_{i2}^{p} \otimes a_{l + 1,2}^{q} + a_{i4}^{p} \otimes a_{l + 1,4}^{q} - a_{i1}^{p} \otimes a_{l + 1,1}^{q} } \right]}}} \right)} \right\rangle . \hfill \\ \end{aligned}$$

      Then, when k = l + 1, the following result can be calculated:

      $$\begin{aligned} \mathop \oplus \limits_{i = 1}^{l + 1} \frac{{w_{i} w_{l + 2} }}{{1 - w_{i} }}\left( {\tilde{a}_{i}^{p} \otimes \tilde{a}_{l + 2}^{q} } \right) = \mathop \oplus \limits_{i = 1}^{l} \frac{{w_{i} w_{l + 2} }}{{1 - w_{i} }}\left( {\tilde{a}_{i}^{p} \otimes \tilde{a}_{l + 2}^{q} } \right) + \frac{{w_{l + 1} w_{l + 2} }}{{1 - w_{l + 1} }}\left( {\tilde{a}_{l + 1}^{p} \otimes \tilde{a}_{l + 2}^{q} } \right) \hfill \\ = \left\langle {\left[ {\mathop \oplus \limits_{i = 1}^{l} \frac{{w_{i} w_{l + 2} }}{{1 - w_{i} }}\left( {a_{i1}^{p} \otimes a_{l + 2,1}^{q} } \right),\mathop \oplus \limits_{i = 1}^{l} \frac{{w_{i} w_{l + 2} }}{{1 - w_{i} }}\left( {a_{i2}^{p} \otimes a_{l + 2,2}^{q} } \right),\mathop \oplus \limits_{i = 1}^{l} \frac{{w_{i} w_{l + 2} }}{{1 - w_{i} }}\left( {a_{i3}^{p} \otimes a_{l + 2,3}^{q} } \right),\mathop \oplus \limits_{i = 1}^{l} \frac{{w_{i} w_{l + 2} }}{{1 - w_{i} }}\left( {a_{i4}^{p} \otimes a_{l + 2,4}^{q} } \right)} \right],} \right. \hfill \\ \quad \left( {\frac{{\mathop \oplus \limits_{i = 1}^{l} \frac{1}{2}\frac{{w_{i} w_{l + 2} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{l + 2,3}^{q} - a_{i2}^{p} \otimes a_{l + 2,2}^{q} + a_{i4}^{p} \otimes a_{l + 2,4}^{q} - a_{i1}^{p} \otimes a_{l + 2,1}^{q} } \right]\left( {T_{{\tilde{a}_{i} }} } \right)^{P} \left( {T_{{\tilde{a}_{l + 2} }} } \right)^{q} }}{{\mathop \oplus \limits_{i = 1}^{l} \frac{1}{2}\frac{{w_{i} w_{2 + 1} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{l + 2,3}^{q} - a_{i2}^{p} \otimes a_{l + 2,2}^{q} + a_{i4}^{p} \otimes a_{l + 2,4}^{q} - a_{i1}^{p} \otimes a_{l + 2,1}^{q} } \right]}},} \right. \hfill \\ \quad \frac{{\mathop \oplus \limits_{i = 1}^{l} \frac{1}{2}\frac{{w_{i} w_{l + 2} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{l + 2,3}^{q} - a_{i2}^{p} \otimes a_{l + 2,2}^{q} + a_{i4}^{p} \otimes a_{l + 2,4}^{q} - a_{i1}^{p} \otimes a_{l + 2,1}^{q} } \right]\left( {1 - I_{{\tilde{a}_{i} }} } \right)^{P} \left( {1 - I_{{\tilde{a}_{l + 2} }} } \right)^{q} }}{{\mathop \oplus \limits_{i = 1}^{l} \frac{1}{2}\frac{{w_{i} w_{l + 2} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{l + 2,3}^{q} - a_{i2}^{p} \otimes a_{l + 2,2}^{q} + a_{i4}^{p} \otimes a_{l + 2,4}^{q} - a_{i1}^{p} \otimes a_{l + 2,1}^{q} } \right]}}, \hfill \\ \quad \left. {\left. {\frac{{\mathop \oplus \limits_{i = 1}^{l} \frac{1}{2}\frac{{w_{i} w_{l + 2} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{l + 2,3}^{q} - a_{i2}^{p} \otimes a_{l + 2,2}^{q} + a_{i4}^{p} \otimes a_{l + 2,4}^{q} - a_{i1}^{p} \otimes a_{l + 2,1}^{q} } \right]\left( {1 - F_{{\tilde{a}_{i} }} } \right)^{P} \left( {1 - F_{{\tilde{a}_{l + 2} }} } \right)^{q} }}{{\mathop \oplus \limits_{i = 1}^{l} \frac{1}{2}\frac{{w_{i} w_{l + 2} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{l + 2,3}^{q} - a_{i2}^{p} \otimes a_{l + 2,2}^{q} + a_{i4}^{p} \otimes a_{l + 2,4}^{q} - a_{i1}^{p} \otimes a_{l + 2,1}^{q} } \right]}}} \right)} \right\rangle \hfill \\ \oplus \left\langle {\left[ {\frac{{w_{l + 1} w_{l + 2} }}{{1 - w_{l + 1} }}a_{l + 1,1}^{p} a_{l + 2,1}^{q} ,\frac{{w_{l + 1} w_{l + 2} }}{{1 - w_{l + 1} }}a_{l + 1,2}^{p} a_{l + 2,2}^{q} ,\frac{{w_{l + 1} w_{l + 2} }}{{1 - w_{l + 1} }}a_{l + 1,3}^{p} a_{l + 2,3}^{q} ,\frac{{w_{l + 1} w_{l + 2} }}{{1 - w_{l + 1} }}a_{l + 1,4}^{p} a_{l + 2,4}^{q} } \right]} \right. \hfill \\ \left. {\quad \left( {\left( {T_{{\tilde{a}_{l + 1} }} } \right)^{p} \left( {T_{{\tilde{a}_{l + 2} }} } \right)^{q} ,1 - \left( {1 - I_{{\tilde{a}_{l + 1} }} } \right)^{p} \left( {1 - I_{{\tilde{a}_{l + 2} }} } \right)^{q} ,1 - \left( {1 - F_{{\tilde{a}_{l + 1} }} } \right)^{p} \left( {1 - F_{{\tilde{a}_{l + 2} }} } \right)^{q} } \right)} \right\rangle . \hfill \\ = \left\langle {\left[ {\mathop \oplus \limits_{i = 1}^{l + 1} \frac{{w_{i} w_{l + 2} }}{{1 - w_{i} }}\left( {a_{i1}^{p} \otimes a_{l + 2,1}^{q} } \right),\mathop \oplus \limits_{i = 1}^{l + 1} \frac{{w_{i} w_{l + 2} }}{{1 - w_{i} }}\left( {a_{i2}^{p} \otimes a_{l + 2,2}^{q} } \right),\mathop \oplus \limits_{i = 1}^{l + 1} \frac{{w_{i} w_{l + 2} }}{{1 - w_{i} }}\left( {a_{i3}^{p} \otimes a_{l + 2,3}^{q} } \right),\mathop \oplus \limits_{i = 1}^{l + 1} \frac{{w_{i} w_{l + 2} }}{{1 - w_{i} }}\left( {a_{i4}^{p} \otimes a_{l + 2,4}^{q} } \right)} \right],} \right. \hfill \\ \quad \left( {\frac{{\mathop \oplus \limits_{i = 1}^{l + 1} \frac{1}{2}\frac{{w_{i} w_{l + 2} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{l + 2,3}^{q} - a_{i2}^{p} \otimes a_{l + 2,2}^{q} + a_{i4}^{p} \otimes a_{l + 2,4}^{q} - a_{i1}^{p} \otimes a_{l + 2,1}^{q} } \right]\left( {T_{{\tilde{a}_{i} }} } \right)^{P} \left( {T_{{\tilde{a}_{l + 2} }} } \right)^{q} }}{{\mathop \oplus \limits_{i = 1}^{l + 1} \frac{1}{2}\frac{{w_{i} w_{2 + 1} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{l + 2,3}^{q} - a_{i2}^{p} \otimes a_{l + 2,2}^{q} + a_{i4}^{p} \otimes a_{l + 2,4}^{q} - a_{i1}^{p} \otimes a_{l + 2,1}^{q} } \right]}},} \right. \hfill \\ \quad \frac{{\mathop \oplus \limits_{i = 1}^{l + 1} \frac{1}{2}\frac{{w_{i} w_{l + 2} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{l + 2,3}^{q} - a_{i2}^{p} \otimes a_{l + 2,2}^{q} + a_{i4}^{p} \otimes a_{l + 2,4}^{q} - a_{i1}^{p} \otimes a_{l + 2,1}^{q} } \right]\left( {1 - I_{{\tilde{a}_{i} }} } \right)^{P} \left( {1 - I_{{\tilde{a}_{l + 2} }} } \right)^{q} }}{{\mathop \oplus \limits_{i = 1}^{l + 1} \frac{1}{2}\frac{{w_{i} w_{l + 2} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{l + 2,3}^{q} - a_{i2}^{p} \otimes a_{l + 2,2}^{q} + a_{i4}^{p} \otimes a_{l + 2,4}^{q} - a_{i1}^{p} \otimes a_{l + 2,1}^{q} } \right]}}, \hfill \\ \quad \left. {\left. {\frac{{\mathop \oplus \limits_{i = 1}^{l + 1} \frac{1}{2}\frac{{w_{i} w_{l + 2} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{l + 2,3}^{q} - a_{i2}^{p} \otimes a_{l + 2,2}^{q} + a_{i4}^{p} \otimes a_{l + 2,4}^{q} - a_{i1}^{p} \otimes a_{l + 2,1}^{q} } \right]\left( {1 - F_{{\tilde{a}_{i} }} } \right)^{P} \left( {1 - F_{{\tilde{a}_{l + 2} }} } \right)^{q} }}{{\mathop \oplus \limits_{i = 1}^{l + 1} \frac{1}{2}\frac{{w_{i} w_{l + 2} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} \otimes a_{l + 2,3}^{q} - a_{i2}^{p} \otimes a_{l + 2,2}^{q} + a_{i4}^{p} \otimes a_{l + 2,4}^{q} - a_{i1}^{p} \otimes a_{l + 2,1}^{q} } \right]}}} \right)} \right\rangle . \hfill \\ \end{aligned}$$

      That is, when k = l + 1, Eq. (29) is true.

    3. (iii)

      So, for all k, Eq. (29) is true. The following equation can be proved in a similar fashion, and the proof is omitted here.

      $$\begin{aligned} \mathop \oplus \limits_{j = 1}^{k} \frac{{w_{k + 1} w_{j} }}{{1 - w_{k + 1} }}\left( {\tilde{a}_{k + 1}^{p} \otimes \tilde{a}_{j}^{q} } \right) = \left\langle {\left[ {\mathop \oplus \limits_{j = 1}^{k} \frac{{w_{k + 1} w_{j} }}{{1 - w_{k + 1} }}\left( {a_{k + 1,1}^{p} \otimes a_{j1}^{q} } \right),\mathop \oplus \limits_{j = 1}^{k} \frac{{w_{k + 1} w_{j} }}{{1 - w_{k + 1} }}\left( {a_{k + 1,2}^{p} \otimes a_{j2}^{q} } \right),\mathop \oplus \limits_{j = 1}^{k} \frac{{w_{k + 1} w_{j} }}{{1 - w_{k + 1} }}\left( {a_{k + 1,3}^{p} \otimes a_{j3}^{q} } \right),\mathop \oplus \limits_{j = 1}^{k} \frac{{w_{k + 1} w_{j} }}{{1 - w_{k + 1} }}\left( {a_{k + 1,4}^{p} \otimes a_{j4}^{q} } \right)} \right],} \right. \hfill \\ \quad \left( {\frac{{\mathop \oplus \limits_{j = 1}^{k} \frac{1}{2}\frac{{w_{k + 1} w_{j} }}{{1 - w_{k + 1} }}\left[ {a_{k + 1,3}^{p} \otimes a_{j3}^{q} - a_{k + 1,2}^{p} \otimes a_{j2}^{q} + a_{k + 1,4}^{p} \otimes a_{j4}^{q} - a_{k + 1,1}^{p} \otimes a_{j1}^{q} } \right]\left( {T_{{\tilde{a}_{k + 1} }} } \right)^{P} \left( {T_{{\tilde{a}_{j} }} } \right)^{q} }}{{\mathop \oplus \limits_{j = 1}^{k} \frac{1}{2}\frac{{w_{k + 1} w_{j} }}{{1 - w_{k + 1} }}\left[ {a_{k + 1,3}^{p} \otimes a_{j3}^{q} - a_{k + 1,2}^{p} \otimes a_{j2}^{q} + a_{k + 1,4}^{p} \otimes a_{j4}^{q} - a_{k + 1,1}^{p} \otimes a_{j1}^{q} } \right]}},} \right. \hfill \\ \quad \frac{{\mathop \oplus \limits_{j = 1}^{k} \frac{1}{2}\frac{{w_{k + 1} w_{j} }}{{1 - w_{k + 1} }}\left[ {a_{k + 1,3}^{p} \otimes a_{j3}^{q} - a_{k + 1,2}^{p} \otimes a_{j2}^{q} + a_{k + 1,4}^{p} \otimes a_{j4}^{q} - a_{k + 1,1}^{p} \otimes a_{j1}^{q} } \right]\left( {1 - I_{{\tilde{a}_{k + 1} }} } \right)^{P} \left( {1 - I_{{\tilde{a}_{j} }} } \right)^{q} }}{{\mathop \oplus \limits_{j = 1}^{k} \frac{1}{2}\frac{{w_{k + 1} w_{j} }}{{1 - w_{k + 1} }}\left[ {a_{k + 1,3}^{p} \otimes a_{j3}^{q} - a_{k + 1,2}^{p} \otimes a_{j2}^{q} + a_{k + 1,4}^{p} \otimes a_{j4}^{q} - a_{k + 1,1}^{p} \otimes a_{j1}^{q} } \right]}}, \hfill \\ \left. {\left. {\quad \frac{{\mathop \oplus \limits_{j = 1}^{k} \frac{1}{2}\frac{{w_{k + 1} w_{j} }}{{1 - w_{k + 1} }}\left[ {a_{k + 1,3}^{p} \otimes a_{j3}^{q} - a_{k + 1,2}^{p} \otimes a_{j2}^{q} + a_{k + 1,4}^{p} \otimes a_{j4}^{q} - a_{k + 1,1}^{p} \otimes a_{j1}^{q} } \right]\left( {1 - F_{{\tilde{a}_{k + 1} }} } \right)^{P} \left( {1 - F_{{\tilde{a}_{j} }} } \right)^{q} }}{{\mathop \oplus \limits_{j = 1}^{k} \frac{1}{2}\frac{{w_{k + 1} w_{j} }}{{1 - w_{k + 1} }}\left[ {a_{k + 1,3}^{p} \otimes a_{j3}^{q} - a_{k + 1,2}^{p} \otimes a_{j2}^{q} + a_{k + 1,4}^{p} \otimes a_{j4}^{q} - a_{k + 1,1}^{p} \otimes a_{j1}^{q} } \right]}}} \right)} \right\rangle . \hfill \\ \end{aligned}$$
      (30)

      Using Eqs. (27), (29) and (20), Eq. (28) can be transformed as follows:

      $$\begin{aligned} {\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{k + 1}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left( {\tilde{a}_{i}^{p} \otimes \tilde{a}_{j}^{q} } \right) &=\, {\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{k}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left( {\tilde{a}_{i}^{p} \otimes \tilde{a}_{j}^{q} } \right) + \mathop \oplus \limits_{i = 1}^{k} \frac{{w_{i} w_{k + 1} }}{{1 - w_{i} }}\left( {\tilde{a}_{i}^{p} \otimes \tilde{a}_{k + 1}^{q} } \right) + \mathop \oplus \limits_{j = 1}^{k} \frac{{w_{k + 1} w_{j} }}{{1 - w_{k + 1} }}\left( {\tilde{a}_{k + 1}^{p} \otimes \tilde{a}_{j}^{q} } \right). \hfill \\ &= \,\left\langle {\left[ {{\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{k + 1}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}a_{i1}^{p} a_{j1}^{q} ,{\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{k + 1}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}a_{i2}^{p} a_{j2}^{q} ,{\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{k + 1}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}a_{i3}^{p} a_{j3}^{q} ,{\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{k + 1}} \frac{{w_{i} w_{j} }}{{1 - w_{i} }}a_{i4}^{p} a_{j4}^{q} } \right],} \right. \hfill \\ &\qquad \left( {\frac{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{k + 1}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]\left( {T_{{\tilde{a}_{i} }} } \right)^{p} \left( {T_{{\tilde{a}_{j} }} } \right)^{q} }}{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{k + 1}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]}},} \right. \hfill \\ &\qquad \frac{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{k + 1}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]\left( {1 - I_{{\tilde{a}_{i} }} } \right)^{p} \left( {1 - I_{{\tilde{a}_{j} }} } \right)^{q} }}{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{k + 1}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]}}, \hfill \\ &\qquad\left. {\left. { \frac{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{k + 1}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]\left( {1 - F_{{\tilde{a}_{i} }} } \right)^{p} \left( {1 - F_{{\tilde{a}_{j} }} } \right)^{q} }}{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{k + 1}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]}}} \right)}\right\rangle . \hfill \\ \end{aligned}$$

      Then, when n = k + 1, Eq. (26) is true. Therefore, Eq. (26) is true for all \(n\).

  2. 2.

    Using the SVTNN operations and Eq. (26), Eq. (15) can be obtained. This completes the proof of Theorem 3.

Appendix 2

Proof

For an arbitrary i, there are a i1 ≥ b i1, a i2 ≥ b i2, a i3 ≥ b i3, a i4 ≥ b i4; therefore, it is easy to obtain the following inequalities:

$$a_{i1}^{p} \ge b_{i1}^{q} ,a_{i2}^{p} \ge b_{i2}^{q} ,a_{i3}^{p} \ge b_{i3}^{q} ,\;{\text{and}}\;a_{i4}^{p} \ge b_{i4}^{q} ,$$

then

$$\left( {{\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{n}} \frac{{w_{i} w_{j} }}{{1 - w_{i}}}a_{i1}^{p} a_{j1}^{q} } \right)^{{\frac{1}{p + q}}} \ge \left({{\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{n}}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}b_{i1}^{p} b_{j1}^{q} }\right)^{{\frac{1}{p + q}}} ,\quad \left({{\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{n}}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}a_{i2}^{p} a_{j2}^{q} }\right)^{{\frac{1}{p + q}}} \ge \left({{\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{n}}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}b_{i2}^{p} b_{j2}^{q} }\right)^{{\frac{1}{p + q}}} ,\quad \left({{\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{n}}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}a_{i3}^{p} a_{j3}^{q} }\right)^{{\frac{1}{p + q}}} \ge \left({{\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{n}}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}b_{i3}^{p} b_{j3}^{q} }\right)^{{\frac{1}{p + q}}} ,\quad \left({{\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{n}}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}a_{i4}^{p} a_{j4}^{q} }\right)^{{\frac{1}{p + q}}} \ge \left({{\mathop{\mathop{\oplus}\limits_{i,j = 1}}\limits_{ i \ne j}^{n}}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}b_{i4}^{p} b_{j4}^{q} }\right)^{{\frac{1}{p + q}}} .$$

The truth-membership, indeterminacy-membership and falsity-membership parts can be proved using mathematical induction on n.

$$\left( {\frac{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{n}} \frac{1}{2}\frac{{w_{i} w_{j}}}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p}a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} }\right]\left( {T_{{\tilde{a}_{i} }} } \right)^{p} \left({T_{{\tilde{a}_{j} }} } \right)^{q}}}{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{n}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[{a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p}a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]}}} \right)^{{\frac{1}{p+ q}}} \ge \left( \frac{{{\mathop{\mathop{\oplus}\nolimits_{i,j =1}}\limits_{ i \ne j}^{n}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 -w_{i} }}\left[ {b_{i3}^{p} b_{j3}^{q} - b_{i2}^{p} b_{j2}^{q} +b_{i4}^{p} b_{j4}^{q} - b_{i1}^{p} b_{j1}^{q} } \right]\left({T_{{\tilde{b}_{i} }} } \right)^{p} \left( {T_{{\tilde{b}_{j} }} }\right)^{q}}}{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{i \ne j}^{n}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[{b_{i3}^{p} b_{j3}^{q} - b_{i2}^{p} b_{j2}^{q} + b_{i4}^{p}b_{j4}^{q} - b_{i1}^{p} b_{j1}^{q} } \right]}} \right),$$
$$1 - \left( {1 - \frac{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{n}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]\left( {1 - I_{{\tilde{a}_{i} }} } \right)^{p} \left( {1 - I_{{\tilde{a}_{j} }} } \right)^{q} }}{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{n}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]}}} \right)^{{\frac{1}{p + q}}} \le 1 - \left( {1 - \frac{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{n}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {b_{i3}^{p} b_{j3}^{q} - b_{i2}^{p} b_{j2}^{q} + b_{i4}^{p} b_{j4}^{q} - b_{i1}^{p} \beta_{j1}^{q} } \right]\left( {1 - I_{{\tilde{b}_{i} }} } \right)^{p} \left( {1 - I_{{\tilde{b}_{j} }} } \right)^{q} }}{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{n}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {b_{i3}^{p} b_{j3}^{q} - b_{i2}^{p} b_{j2}^{q} + b_{i4}^{p} b_{j4}^{q} - b_{i1}^{p} \beta_{j1}^{q} } \right]}}} \right)^{{\frac{1}{p + q}}} ,\;{\text{and}}$$
$$1 - \left( {1 - \frac{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{n}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]\left( {1 - F_{{\tilde{a}_{i} }} } \right)^{p} \left( {1 - F_{{\tilde{a}_{j} }} } \right)^{q} }}{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{n}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {a_{i3}^{p} a_{j3}^{q} - a_{i2}^{p} a_{j2}^{q} + a_{i4}^{p} a_{j4}^{q} - a_{i1}^{p} a_{j1}^{q} } \right]}}} \right)^{{\frac{1}{p + q}}} \le 1 - \left( {1 - \frac{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{n}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {b_{i3}^{p} b_{j3}^{q} - b_{i2}^{p} b_{j2}^{q} + b_{i4}^{p} b_{j4}^{q} - b_{i1}^{p} b_{j1}^{q} } \right]\left( {1 - F_{{\tilde{b}_{i} }} } \right)^{p} \left( {1 - F_{{\tilde{b}_{j} }} } \right)^{q} }}{{{\mathop{\mathop{\oplus}\nolimits_{i,j = 1}}\limits_{ i \ne j}^{n}} \frac{1}{2}\frac{{w_{i} w_{j} }}{{1 - w_{i} }}\left[ {b_{i3}^{p} b_{j3}^{q} - b_{i2}^{p} b_{j2}^{q} + b_{i4}^{p} b_{j4}^{q} - b_{i1}^{p} b_{j1}^{q} } \right]}}} \right)^{{\frac{1}{p + q}}} .$$

Then, using the new comparison method in Sect. 3.2, Theorem 3 can be proved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Rx., Wang, Jq. & Li, L. Multi-criteria group decision-making method based on interdependent inputs of single-valued trapezoidal neutrosophic information. Neural Comput & Applic 30, 241–260 (2018). https://doi.org/10.1007/s00521-016-2672-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2672-2

Keywords

Navigation